不規則なガラス構造に隠された規則性~原子の柱が作り出す密度の”むら”の構造抽出に成功~

ad

2024-05-13 早稲田大学

発表のポイント

  • 最先端の電子顕微鏡法の1つであるオングストロームビーム電子回折法※1を用いて、シリカ(SiO2)ガラス※2の非常に細かい構造を直接観察することに成功した。
  • ガラスに存在する原子のナノスケール柱状構造※3及びその配列に関係した複数の異なる周期性を発見した。
  • これらの柱状構造がほぼ周期的に配列することで「擬格子面※4」と呼ばれる面状の領域が形成され、これにより古くから議論されてきたガラスの「FSDP※5(First Sharp Diffraction Peak)」と呼ばれる特徴的な回折ピークの起源を解明した。
  • この柱状構造の配列は、ガラスにおける密度の”むら”(密度ゆらぎ)と密接に関係しており、例えば、ガラスを電池用材料、窓ガラス、光ファイバーとして利用する際のイオン伝導特性、強度、光学特性の改善に繋がる基礎として重要となる。

不規則なガラス構造に隠された規則性~原子の柱が作り出す密度の”むら”の構造抽出に成功~
図1.オングストロームビーム電子回折実験を用いた観察による、シリカガラス中に存在するナノスケール柱状構造の局所的な擬周期配列の発見。


早稲田大学理工学術院教授 平田秋彦(ひらたあきひこ)、東北大学未踏スケールデータアナリティクスセンター教授 志賀元紀(しがもとき)、物質・材料研究機構マテリアル基盤研究センターグループリーダー 小原真司(こはらしんじ)らの研究グループ(以下、本研究グループ)は、オングストロームビーム電子回折法を用いることで、ナノスケール柱状構造がほぼ等間隔に並んで形成される局所秩序構造を、一見不規則な構造を持つとされる、もっとも一般的なガラス材料であるシリカ(SiO2)ガラスの中に見い出しました。この秩序構造は、複数の異なる周期からなる密度ゆらぎを含む複雑な構造であることがわかりました。このような柱状構造配列の発見は、ガラス構造の科学に新たな視点を与え、さらに、柱状構造配列が作る密度ゆらぎの理解は、ガラス材料の特性や性能を制御するために欠かせない知見となると考えられます。

本研究成果は、Springer Nature社発行の科学ジャーナル『NPG Asia Materials』誌に、2024年5月10日(金)(現地時間)にオンラインで掲載されました(論文名:Direct observation of the atomic density fluctuation originating from the first sharp diffraction peak in SiO2 glass)。

(1)これまでの研究で分かっていたこと(科学史的・歴史的な背景など)

我々の生活に欠かせないガラスは、その原子レベルでの構造に関して古くから議論がなされてきました。中でも代表的なガラスであるシリカ(SiO2)ガラスは、Siの周りに4つのOが共有結合しSiO4正四面体が頂点に位置するOが四面体の頂点を共有して連結することにより、リング構造を作り、そのリングサイズの分布に特徴を持つこともわかっています。このようなガラスにX線や中性子線などの波長の短い波を当てると、波が原子配列によって干渉されて特徴的なパターンが出ますが、特に原子間のスケールよりも大きい周期に対応する「FSDP(First Sharp Diffraction Peak)」と呼ばれる回折ピークの出現について、古くから多くの議論がなされてきました。これを理解するために、例えば、擬格子面の概念が提唱されておりましたが、その具体的な起源については不明な点が残されていました。

(2)今回の新たに実現しようとしたこと、明らかになったこと、新しく開発した手法


図2.a オングストロームビーム電子回折実験の模式図、b 電子回折で見られる異なる構造周期に対応する回折スポット、c 中性子およびX線回折で得られたFSDP(矢印はbの電子回折における回折スポットの位置)、d 得られた電子回折パターンの例(一番左は平均化した、いわゆるハローリングと呼ばれるもの)。


本研究では、ガラスにおける擬格子面の正体を明らかにするため、シリカガラスで見られるFSDPに着目し、この回折ピークをシリカガラスの局所領域(1nm以下の領域)から得る目的で、本研究グループが開発してきたオングストロームビーム電子回折法を用いました(図2)。特に今回、エネルギーフィルターを導入することで、局所領域からのFSDPを明瞭に撮影することに成功しました。また、シミュレーションによって構築された構造モデルからも、近年本研究グループが開発したオングストロームビーム電子回折の理論計算結果を用いて、この実験結果を再現する局所構造を抽出することが可能となりました。この構造モデルは、X線および中性子回折の結果を再現するように分子動力学法※6と逆モンテカルロ法※7を組み合わせて作成されたものです。

抽出した局所構造に高速フーリエ変換を適用することにより、構造中に存在する擬周期が原子の柱状構造の配列から生じることが明らかとなりました。この柱状構造はブリッジの役割を果たす原子によってお互い接続されることで、おおよそ等間隔に並んで擬格子面を構成していることが特徴であり、これによりFSDPが生じるものと推察されます。また、このような柱状構造が取り囲むように柱状の空隙も形成されており、明瞭な密度ゆらぎの存在が示唆されます。さらに、この密度ゆらぎを特徴づける複数の周期が混在し、複雑な階層的構造が形成されていることもわかりました(図3)。


図3.a 特徴的な電子回折パターンに対応する局所構造モデル、b 図aの領域Iと領域IIを側面から見たもの、c, d 同一構造内での異なる周期の存在(cはFSDPのピークトップ位置、dはその裾に対応する周期)、e bの領域Iの構造に柱状の空隙が存在することを示すために仮想的に棒を挿入したもの。


このような柱状構造は、局所構造についてある特別な方向から見た時に、その方向に沿って存在するものであり、構造モデルの中からこのような場所を見つけるためには、今回使用したオングストロームビーム電子回折計算は非常に強力な手法です。また、この局所構造中の柱状構造は、結晶において見られるものと類似していることもわかりました。しかし、ガラス中の柱状構造は、結晶には存在しないリング構造である5員環や7員環を多く含んでおります。これにより構造の乱れが導入され、結晶のように広範囲にわたって周期構造が続かない原因となっているものと考えられます。

(3)研究の波及効果や社会的影響

結晶材料では、その原子配列である結晶構造が決定され、転位などに代表される格子欠陥が明確に定義されていることから、これらを制御することで様々な用途に対応した材料開発が行われてきています。一方で、ガラス材料に関しては、原子配列の決定は周期性が無いことから難しく、欠陥構造の定義も未だ明確なものはありません。

本研究では、ガラス構造中の局所秩序をナノスケール柱状構造の局所的な配列として捉えられることを示しております。ナノスケール柱状構造の配列が様々な長さの密度揺らぎを作ることから、平均的な周期から大きく逸脱した領域はガラス構造のある種の欠陥として理解することができます。このような欠陥は、ガラス材料のイオン伝導性、機械的物性、光学特性、などに大きく影響することが予想されます。これらの特性は、ガラス材料を電池の負極材や固体電解質、窓ガラス、光ファイバーなどとして利用する上で重要なものであり、欠陥の理解は材料特性を向上させる上で役立つことが将来的に期待されます。

(4)課題、今後の展望

今後は、ガラスの種類や作製法によって、どのような密度ゆらぎ、特に欠陥と呼べるような構造が導入されるかを系統的に調べ、それにより、上述した電池用材料、窓ガラス、光ファイバーなどの応用において、それら欠陥構造がイオン伝導特性、強度、光学特性などの物性にどのような影響を及ぼすかを調べる予定です。また、それらを制御することにより、さらに性能の高いガラス材料の開発が進むことが期待されます。

(5)研究者のコメント
  • 今回見出したナノスケール柱状構造の配列は、我々独自の実験および解析手法を用いることで目に見える形として初めて抽出されたものであり、これまで広く議論されてきたリング構造としての見方と実験で観測される回折データを結び付けるという点で、ガラス構造の見方に新たな視点を加えるものだと考えています。(平田)
  • ビーム径の大きさのため平均化され埋もれていた構造秩序を、極限まで絞り込んだ電子ビームを用いて、初めて観測した成果です。新しい観測は理論を刺激し、その逆もあり、多様な研究者の連携がこの分野の推進に不可欠と考えています。(志賀)
(6)用語解説

※1 オングストロームビーム電子回折法
ガラス構造の局所領域から回折パターン(物質に波を当てたときに得られる干渉パターン)を取得するための透過電子顕微鏡を用いた実験方法。通常、マイクロビームあるいはナノビーム電子回折と呼ばれるが、ガラス構造の観察には特にオングストロームスケール(1nm以下)での観測が本質的に重要となるため、このように呼んでいる。ガラス構造の10nm以上の十分に広い領域から回折パターンを取得した場合は、ハローリングと呼ばれる複数の回折リングが見られるが、領域が1nm以下になると回折スポットを呈するようになり、これが局所構造を反映していると考えられる。

※2 シリカガラス
シリコンと酸素から成りSiO2の化学組成を持つガラス物質のこと。ガラスとは通常液体状態が冷却されて過冷却状態になり、さらなる冷却により粘性が極度に高まることで得られる固体状の物質を指す。過冷却液体からガラスへの転移をガラス転移といい、体積の温度に対する変化率(熱膨張係数)等が「ガラス転移が起こる温度(ガラス転移点)」を境に変化する。このガラス状態の原子配列に本研究では特に着目しており、それは結晶のような規則性を持たない不規則なものである。

※3 ナノスケール柱状構造
本研究において、シリカガラスの中に見いだされた原子が結合してできた2nm程度の長さを持つ直線状の構造。これは独立して存在するわけではなく、ブリッジ原子と呼ぶ原子によってお互いに接続されている。また、同じ領域に対して他の方向から見た場合に、その入射方向に沿って別の柱状構造が存在する可能性もあり、この特徴は結晶構造の場合と同様である。

※4 擬格子面
結晶学や固体物理学では、原子が規則正しく並んだ結晶構造において、周期性を反映する格子という概念を考え、それを基に原子を置いていくことで結晶が作られるとする。この格子中に作られる周期的に配列される面が格子面であり、結晶構造にX線、電子線、中性子線のような波長の短い波をあてた場合、格子面の間隔がある条件を満たすと波が強めあう性質があるため、この概念が重要となる。一方、ガラスなどの不規則な構造では、このような明瞭な格子面は存在しないが、局所的にある程度の規則性を示す部分があり、これを擬格子面とここでは呼んでいる。擬格子面の存在は、結晶のおける格子面と同様に波が強め合う原因となると考えられている。

※5 FSDP
First Sharp Diffraction Peakの略。シリカガラスのような化学結合によるネットワークから構成されるガラス構造に対し、X線、電子線、中性子線のような波長の短い波をあてることにより現れる回折ピーク(Diffraction Peak)のうち、もっとも小さい回折角で観測されるもの。低角側から数えて最初に出現するピークであり、ガラスのような非晶質物質にしてはシャープであるため、この名前がついている。このピークに対応する距離スケールは4Å前後であり、原子間距離のスケールより2倍程度大きいことが特徴である。つまり、原子の結合よりも大きいスケールの構造を反映したものであると考えられる。

※6 分子動力学法
物質中の原子や分子の時々刻々の動きをシミュレートする方法。原子あるいは分子の間に働く力を仮定し、運動方程式を差分法と呼ばれる数値計算により解く。

※7 逆モンテカルロ法
回折実験から得られた構造因子や2体分布関数にフィットするような原子配列モデルを求める方法。基本的には実験値と計算値の差が少なくなるよう、乱数を用いて原子を変位させる。

(7)論文情報

雑誌名:NPG Asia Materials
論文名:Direct observation of the atomic density fluctuation originating from the first sharp diffraction peak in SiO2 glass
執筆者名(所属機関名):平田 秋彦(早稲田大学)、佐藤 柊哉(東京理科大学)、志賀 元紀(東北大学)、小野寺 陽平(物質・材料研究機構)、木本 浩司(物質・材料研究機構)、小原 真司(物質・材料研究機構)
掲載日(現地時間):2024年5月10日(金)
掲載URL:https://www.nature.com/articles/s41427-024-00544-w
DOI:https://doi.org/10.1038/s41427-024-00544-w

(8)研究助成

研究費名:科学研究費 挑戦的研究(萌芽) 課題番号:23K17837
研究課題名:ガラス構造における擬格子面と位相幾何的秩序
研究代表者名(所属機関名):平田 秋彦(早稲田大学)

研究費名:科学研究費 学術変革領域研究(A) 課題番号:20H05884
研究課題名:数理情報科学に基づく超秩序構造の網羅的解析
研究代表者名(所属機関名):志賀 元紀(東北大学)

研究費名:科学研究費 学術変革領域研究(A) 課題番号:20H05881
研究課題名:先端量子ビーム手法群によるナノ・メゾスケール元素選択構造計測
研究代表者名(所属機関名):小原 真司(物質・材料研究機構)

0501セラミックス及び無機化学製品
ad
ad
Follow
ad
タイトルとURLをコピーしました