AIの改良で水供給の予測精度が向上(Improved AI process could better predict water supplies)

ad

2024-05-01 ワシントン州立大学(WSU)

A snowy mountain scene with measurement equipment in the foreground -- two poles and a brown box set deep in the snow.
Mt. Eyak SNOTEL site, above the coastal town of Cordova, Alaska. Snow depth is about 10.5 feet, 45% density. Taken April 2012. Photo by Daniel Fisher of the USDA Natural Resources Conservation Service.

ワシントン州立大学の研究チームは、AIを利用して西部地域の広大な範囲での雪量と水の利用可能性をより正確に測定する新しいコンピュータモデルを開発しました。このモデルは、時間と空間の両方を考慮しており、他のAIモデルよりも優れた性能を示しています。この情報は、農業や水力発電などの水の計画に重要であり、地域の水管理に役立てることが期待されています。このモデルは、特に測定局が設置されていない場所でも日々の水の利用可能量を予測することを目指しています。

<関連情報>

積雪量予測のためのアテンション・ベース・モデル Attention-Based Models for Snow-Water Equivalent Prediction

Krishu K Thapa ,Bhupinderjeet Singh ,Supriya Savalkar ,Alan Fern,Kirti Rajagopalan ,Ananth Kalyanaraman
Proceedings of the AAAI Conference on Artificial Intelligence  Published:2024-03-24
DOI:https://doi.org/10.1609/aaai.v38i21.30337

Abstract

Snow Water-Equivalent (SWE)—the amount of water available if snowpack is melted—is a key decision variable used by water management agencies to make irrigation, flood control, power generation, and drought management decisions. SWE values vary spatiotemporally—affected by weather, topography, and other environmental factors. While daily SWE can be measured by Snow Telemetry (SNOTEL) stations with requisite instrumentation, such stations are spatially sparse requiring interpolation techniques to create spatiotemporal complete data. While recent efforts have explored machine learning (ML) for SWE prediction, a number of recent ML advances have yet to be considered. The main contribution of this paper is to explore one such ML advance, attention mechanisms, for SWE prediction. Our hypothesis is that attention has a unique ability to capture and exploit correlations that may exist across locations or the temporal spectrum (or both). We present a generic attention-based modeling framework for SWE prediction and adapt it to capture spatial attention and temporal attention. Our experimental results on 323 SNOTEL stations in the Western U.S. demonstrate that our attention-based models outperform other machine-learning approaches. We also provide key results highlighting the differences between spatial and temporal attention in this context and a roadmap toward deployment for generating spatially-complete SWE maps.

ad
1702地球物理及び地球化学
ad
ad


Follow
ad
タイトルとURLをコピーしました