量子相互作用研究の新領域を開く:「マジックトラップ」が超低温分子の量子コヒーレンスを予想以上に長く保つ(Rice research opens new arena to study quantum interactions:‘Magic trap’ preserves quantum coherence in ultracold molecules longer than expected)

ad

2024-01-18 ライス大学

◆ライス大学の研究者は、超冷却温度と特定の波長のレーザーを使用して、量子挙動の持続時間をほぼ30倍に延長する「魔法のトラップ」を実現しました。通常、量子挙動は短時間しか続かないが、この新手法により、量子相互作用を長時間研究する新たな可能性が開かれました。
◆従来の1/20秒の量子状態を30倍に延長する成功は、量子技術の発展に向けた新たな洞察を提供し、超冷却分子を利用した新しい実験系の構築に貢献します。

<関連情報>

超低温極性分子の気体におけるセカンドスケールの回転コヒーレンスと双極子相互作用 Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules

Philip D. Gregory,Luke M. Fernley,Albert Li Tao,Sarah L. Bromley,Jonathan Stepp,Zewen Zhang,Svetlana Kotochigova,Kaden R. A. Hazzard & Simon L. Cornish
Nature Physics  Published:17 January 2024
DOI:https://doi.org/10.1038/s41567-023-02328-5

量子相互作用研究の新領域を開く:「マジックトラップ」が超低温分子の量子コヒーレンスを予想以上に長く保つ(Rice research opens new arena to study quantum interactions:‘Magic trap’ preserves quantum coherence in ultracold molecules longer than expected)

Abstract

Ultracold polar molecules combine a rich structure of long-lived internal states with access to controllable long-range anisotropic dipole–dipole interactions. In particular, the rotational states of polar molecules confined in optical tweezers or optical lattices may be used to encode interacting qubits for quantum computation or pseudo-spins for simulating quantum magnetism. As with all quantum platforms, the engineering of robust coherent superpositions of states is vital. However, for optically trapped molecules, the coherence time between rotational states is typically limited by inhomogeneous differential light shifts. Here we demonstrate a rotationally magic optical trap for 87Rb133Cs molecules that supports a Ramsey coherence time of 0.78(4) s in the absence of dipole–dipole interactions. This is estimated to extend to >1.4 s at the 95% confidence level using a single spin-echo pulse. In our trap, dipolar interactions become the dominant mechanism by which Ramsey contrast is lost for superpositions that generate oscillating dipoles. By changing the states forming the superposition, we tune the effective dipole moment and show that the coherence time is inversely proportional to the strength of the dipolar interaction. Our work unlocks the full potential of the rotational degree of freedom in molecules for quantum computation and quantum simulation.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました