2023-06-12 パシフィック・ノースウェスト国立研究所(PNNL)
◆彼らは重要な課題である水素の貯蔵を最適化するため、重曹溶液を使用する方法を調査しています。この研究は注目を集めており、将来のエネルギーグリッドにおける水素の長期的な貯蔵能力が鍵であると考えられています。また、水素は地理的に制約を受けずに貯蔵が可能であり、大規模な水素貯蔵タンクの追加が経済的であるため、バッテリーよりも経済的な解決策となる可能性があります。
<関連情報>
- https://www.pnnl.gov/news-media/baking-soda-solution-clean-hydrogen-storage
- https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc00219e
地球上に豊富に存在する材料を用いた長期エネルギー貯蔵:重炭酸塩/ギ酸塩の電気化学的および熱化学的サイクル Using earth abundant materials for long duration energy storage: electro-chemical and thermo-chemical cycling of bicarbonate/formate
Oliver Y. Gutiérrez, Katarzyna Grubel, Jotheeswari Kothandaraman, Juan A. Lopez-Ruiz, Kriston P. Brooks, Mark E. Bowden and Tom Autrey
Green Chemistry Published:29 Mar 2023
DOI:https://doi.org/10.1039/D3GC00219E
Abstract
Using hydrogen to store energy in chemical bonds is a key component of the global strategy to achieving a sustainable future and ameliorating climate change. The challenges associated with handling molecular hydrogen can be solved by using liquid hydrogen carriers. In this perspective, we discuss the concept of bicarbonate–formate cycle, where aqueous solutions of formate ions (HCO2−) are used as hydrogen and energy carriers. Such solutions are composed by earth abundant elements and, in contrast to common liquid organic carriers, are non-flammable, and readily convert to the oxide forms (HCO3−) under reaction with water to release hydrogen, or electrons, at moderate temperatures. We discuss thermodynamic aspects of the bicarbonate–formate cycle and show how it offers the opportunity of combining electrochemical and thermochemical operations, as well as of coupling CO2 capture with energy/hydrogen storage. We emphasize the potential role of electrochemistry in the generation of formate and in the release of energy in the form of electricity. At present, more information on both the fundamental and systems level, is needed to identify the feasible scenarios for using formate/bicarbonate salts for hydrogen/energy storage. It is likely, however, that several strategies, including hybrid electrochemical–thermochemical approaches, will suit different applications. It is also clear that more integration between the disciplines of electrochemistry and heterogeneous catalysis is needed to overcome the challenges for advancing the HCO3−–HCO2− system as a feasible green alternative for storing and transporting energy.