リアクションホイール1つでバランスをとる「One-Wheel Cubli」。(The One-Wheel Cubli balances with only a single reaction wheel)

ad
ad

ドイツ連邦工科大学のRaffaello D’Andrea教授が率いるグループのロボット工学の専門家が、ピボットでバランスをとり、外乱を補正できる新しいキューブ型ロボットを開発しました。One-Wheel Cubliの特徴は?先行機種とは異なり、必要なリアクションホイールは1つだけです。 Robotics specialists from a group led by ETH professor Raffaello D’Andrea have created a new, cube-​shaped robot that can balance on its pivot and compensate for external disturbances. What makes the One-​Wheel Cubli unique? Unlike its predecessors, it only requires a single reaction wheel.

2023-03-03 スイス連邦工科大学チューリッヒ校(ETHZurich)

スイス連邦工科大学(ETH)ロボット工学科のラファエロ・ダンドレア教授が率いる研究者たちが、ピボットでバランスをとることができるロボットキューブを発表して話題になったのは、今から10年ほど前のことだ。キューブの内部にある複数のリアクションホイールで外乱をある程度補正し、バランスを崩しにくくしていたのです。また、制御された落下によって、飛び上がったり、移動したりすることも可能でした。
そして今、その後継機「One-Wheel Cubli」が誕生した。ダンドリーア工房が命名した、新しいバランス感覚を持つアーティストだ。バランスをとるために必要なのは、リアクションホイール1つだけ。車輪の代わりに、綱渡りのようにバランスポールを装備しています。その結果、2つの運動方向で慣性力が異なるため、One-Wheel Cubliは両方の方向を同時に安定させることができるのです。メカトロニクス』誌の最新号では、このOne-Wheel Cubliを紹介しています。

<関連情報>

ワンホイールキューブリ:1つのリアクションホイールでバランスを取ることができる3D倒立振子 The One-Wheel Cubli: A 3D inverted pendulum that can balance with a single reaction wheel

Matthias Hofer, Michael Muehlebach, Raffaello D’Andrea
Mechatronics  Available online: 20 February 2023
DOI:https://doi.org/10.1016/j.mechatronics.2023.102965

Abstract

This article presents a novel 3D inverted pendulum that can balance on one of its corners using only a single reaction wheel. This is achieved by a careful design of the mass moment of inertia in such a way that the inertia along the two principal tilt axes is significantly different. The consequence is a time-scale separation of the underlying tilt dynamics, which renders the system controllable. We show that controllability is maximized when the ratio of the two principal inertia values amounts to the square of the silver ratio and discuss a sensor placement that minimizes variance in our tilt estimates. Both of these aspects lead to a principled design of the system. A model is derived from first-principles and used for delay compensation, state estimation, and to design a linear-quadratic regulator that stabilizes the highly underactuated system in its upright equilibrium. Thereby, the modeling and compensation of cantilever deflections, which arise from the lightweight design, is crucial. The article includes experimental results, which underline the efficacy of the system design and highlight an excellent balancing performance of the proposed feedback controller.

ad

0109ロボット
ad
ad
Follow
ad
タイトルとURLをコピーしました