AIを活用した新しい宇宙観測フレームワーク「RADAR」 (RADAR: A New Era of Collaborative Cosmic Exploration)

2026-01-28 アルゴンヌ国立研究所(ANL)

米アルゴンヌ国立研究所(Argonne National Laboratory)は、宇宙観測を革新する国際共同プロジェクト「RADAR」を紹介した。RADARは、世界中の研究機関が保有する天文データや計算資源を連携させ、次世代望遠鏡時代に急増する観測データを効率的に解析・共有するための新たな枠組みである。大型望遠鏡や多波長観測から得られる膨大かつ複雑なデータを、分散型計算と先進的アルゴリズムによって統合解析することで、銀河形成、暗黒物質、宇宙進化などの研究を加速させる。RADARは単一機関では困難な科学課題に対し、国境や分野を越えた協力を可能にし、宇宙探査を「協調型科学」へと進化させる基盤になると期待されている。

AIを活用した新しい宇宙観測フレームワーク「RADAR」 (RADAR: A New Era of Collaborative Cosmic Exploration)
Scientific visualization of a numerical relativity simulation of a compact binary system consistent with the astrophysical parameters of the binary neutron star merger GW170817. The simulation was produced with the open-source, numerical relativity software — the Einstein Toolkit. (Image by Eliu Huerta, Roland Haas and Shawn Rosofsky/Argonne National Laboratory.)

<関連情報>

電波残光検出とAI駆動型対応(RADAR):重力波イベント追跡のための連合フレームワーク Radio Afterglow Detection and AI-driven Response (RADAR): A Federated Framework for Gravitational-wave Event Follow-up

Parth Patel, Alessandra Corsi, E. A. Huerta, Kara Merfeld, Victoria Tiki, Zilinghan Li, Tekin Bicer, Kyle Chard, Ryan Chard, Ian T. Foster,…
The Astrophysical Journal Supplement Series
DOI:10.3847/1538-4365/adfbea

Abstract

The landmark detection of both gravitational waves (GWs) and electromagnetic (EM) radiation from the binary neutron star merger GW170817 has spurred efforts to streamline the follow-up of GW alerts in current and future observing runs of ground-based GW detectors. Within this context, the radio band of the EM spectrum presents unique challenges. Sensitive radio facilities capable of detecting the faint radio afterglow seen in GW170817, and with sufficient angular resolution, have small fields of view compared to typical GW localization areas. Additionally, theoretical models predict that the radio emission from binary neutron star mergers can evolve over weeks to years, necessitating long-term monitoring to probe the physics of the various postmerger ejecta components. These constraints, combined with limited radio observing resources, make the development of more coordinated follow-up strategies essential—especially as the next generation of GW detectors promises a dramatic increase in detection rates. Here, we present RADAR, a framework designed to address these challenges by promoting community-driven information sharing, federated data analysis, and system resilience, while integrating AI methods for both GW signal identification and radio data aggregation. We show that it is possible to preserve data rights while sharing models that can help design and/or update follow-up strategies. We demonstrate our approach through a case study of GW170817, and discuss future directions for refinement and broader application.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました