地震計ネットワークで落下する宇宙ゴミの追跡に成功(Tracking space junk as it falls to Earth)

2026-01-22 ジョンズ・ホプキンス大学(JHU)

Johns Hopkins Universityの研究者らは、地球へ落下する宇宙デブリ(宇宙ごみ)を高精度に追跡・予測する新手法を開発した。近年、人工衛星やロケット残骸の増加により、大気圏再突入時の安全確保が重要課題となっている。本研究では、地上センサーやレーダー観測、軌道力学モデルを統合し、デブリが大気圏で受ける空力加熱や分解過程を考慮した追跡技術を構築した。これにより、落下位置や時刻の予測精度が向上し、航空機運航や地上の人命・インフラへのリスク低減が可能となる。研究者らは、この技術が宇宙交通管理(STM)や将来の衛星運用ルール策定にも貢献するとしており、宇宙活動が拡大する時代に不可欠な安全基盤技術として注目されている。

地震計ネットワークで落下する宇宙ゴミの追跡に成功(Tracking space junk as it falls to Earth)
Shenzhou-15 spacecraft debris entering Earth’s atmosphere, April 2, 2024.Credit:Christopher H. / American Meteor Society

<関連情報>

地震データを用いて追跡された宇宙デブリの再突入と崩壊のダイナミクス Reentry and disintegration dynamics of space debris tracked using seismic data

Benjamin Fernando and Constantinos Charalambous
Science  Published:22 Jan 2026
DOI:https://doi.org/10.1126/science.adz4676

Editor’s summary

More and more spacecraft are falling back to Earth. Radar and optical limits mean that uncontrolled re-entries are difficult to track and, in case of toxic fallout, quickly mitigate. Fernando and Charalambous tapped open-source seismic data to demonstrate how a sensor network resolved the shockwaves caused by the 2024 re-entry and breakup of the Shenzhou-15 module over Southern California (see the Perspective by Carr). Their inversion technique yielded critical information about the debris, including speed, trajectory, descent angle, and fragmentation pattern. The combination of publicly available data and a computationally efficient analysis shows the promise of near real-time seismic tracking of re-entering space debris. —Angela Hessler

Abstract

The risks posed by reentering space debris continue to grow as Earth’s orbit becomes more crowded. Currently, responses to uncontrolled reentries are hampered by an inability to reliably track spacecraft once they are burning up within the atmosphere, meaning that debris fallout locations are poorly predicted. We have demonstrated a minimum-gradient fit seismic inversion methodology that allows in-atmosphere debris trajectory, speed, altitude, descent angle, size, and fragmentation pattern to be discerned relatively quickly. We tested this methodology on open-source data from the 2024 reentry of Shenzhou-15, deriving a location significantly south of the predicted track. Observations of cascading, multiplicative fragmentation offer insight into debris disintegration dynamics, with clear implications for space situational awareness and debris hazard mitigation.

0302航行援助施設
ad
ad
Follow
ad
タイトルとURLをコピーしました