万能AIによるサステナブル材料設計~分解性とタフさのトレードオフ解決に迫る新技術~

2025-12-23 理化学研究所

理化学研究所(理研)は、生分解性プラスチックの「環境中では分解してほしいが、使用時はタフで壊れにくい」というトレードオフに対し、マルチモーダル・マルチタスク機械学習(“万能AI”)で解決に迫る新技術を示した。微生物分解の段階実験(4~30日)で重量変化を追い、TD-NMRや2D-NMR、DSC、引張試験、RDKit分子記述子など多様なデータを統合して、分解速度と靭性・弾性などを同時予測。SHAP解析により分子鎖の運動性(DQ/MSEなど)や局所構造、柔軟性、非晶領域の運動性が両特性を左右する主要因と特定し、分解性とタフさの両立に向けた設計指針を提示した。成果はSustainable Materials and Technologiesに掲載。

万能AIによるサステナブル材料設計~分解性とタフさのトレードオフ解決に迫る新技術~
「万能AI」(複数モーダル・タスクを学習)によるサステナブル材料設計

<関連情報>

NMRデータサイエンスを活用した多様な生分解性ポリマーのための同時マルチモーダルおよびマルチタスク戦略 Simultaneous multimodal and multitask strategies for diverse biodegradable polymers powered by NMR data science

Xinyu Ni, Yoshifumi Amamoto, Jun Kikuchi
Sustainable Materials and Technologies  Available online: 19 November 2025
DOI:https://doi.org/10.1016/j.susmat.2025.e01781

Highlights

  • A multimodal–multitask deep learning model was established to guide the balance between degradability and toughness.
  • Multi-dimensional analysis combining TD-NMR characteristics and chemical descriptors.
  • Focused on marine-relevant biodegradable polymers.

Abstract

As the world shifts toward a sustainable and circular economy, the demand is growing for materials that are both high-performing and environmentally responsible. Biodegradable polymers present a fundamental design challenge, as increased mechanical strength can impede breakdown, creating a trade-off that conventional strategies struggle to reconcile. Here we present a multimodal, multitask deep-learning framework that models mechanical performance and mass-loss behavior from molecular descriptors, thermal properties, and Nuclear Magnetic Resonance (NMR) signals. Within a panel of seven representative biodegradable polyesters relevant to marine/estuarine setting as 0.2-mm films and evaluated in vacuum-filtered estuary water, the framework jointly addresses multiple targets—strain at break, maximum stress, Young’s Modulus, and 30-day endpoint mass loss—and highlights hierarchical molecular and dynamic features underlying the toughness–degradability balance. SHAP analysis revealed that features governing segmental rigidity and thermal properties jointly drive the trade-off between mass loss and mechanical performance. In particular, descriptors from Time Domain Nuclear Magnetic Resonance (TD-NMR) relaxometry and 13C/1H NMR principal components consistently emerged as top predictors linking degradability with strain at break, maximum stress, and Young’s Modulus. This framework establishes a generalizable route to integrate multimodal NMR-derived dynamics with machine learning for rational design of biodegradable polymers.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました