光で動く空中浮遊マイクロモーターを開発(Concordia researchers develop light-powered micromotors that move through air)

2025-11-13 コンコルディア大学

Concordia Universityの研究チームは、光だけを動力源として空気中を移動できるマイクロモーターを世界で初めて開発しました。粒径約12 µm(人間の髪の10分の1程度)の花粉状構造体で、酸化亜鉛を基材に金めっきが施されています。近赤外線光を照射すると金層が光を吸収して周辺空気を加熱し、熱対流が発生。この対流が粒子を浮上・移動させ、照射方向を変えることで軌道制御も可能です。これまでマイクロモーターは主に液中でしか駆動できず、空気中での移動は重力・浮力・粘性の制約から極めて困難でした。本技術は、燃料も電池も搭載せずに空気中を飛行可能なマイクロ構造体を実現し、将来は大気中の微粒子検知センサー、空気浄化用微小機器、制御可能なマイクロ飛行体の群制御などの応用が期待されます。

光で動く空中浮遊マイクロモーターを開発(Concordia researchers develop light-powered micromotors that move through air)
Micromotor cluster closeup. Image courtesy Impact Research Comms, created for Wiley for the publication in Advanced Materials.

<関連情報>

熱対流で推進する空気中の光活性化マイクロモーター Light-Activated Micromotors in Air Propelled by Thermal Convection

Pedro Mena-Giraldo, Gabrielle A. Mandl, Victor Quezada-Novoa, Camilo Garcia-Henao, Nicolas Bondon, Melanie Jane Hazlett, John A. Capobianco
Advanced Materials  Published: 18 September 2025
DOI:https://doi.org/10.1002/adma.202505959

Abstract

Micromotors are an attractive cutting-edge technology that exhibit controllable motion in response to chemical reactions or external stimuli. These nature-inspired materials are widely explored for use in environmental remediation, and drug delivery, other emerging applications. Until now, the micromotors field is restricted to applications in aqueous environments, as achieving controllable motion in air while overcoming gravity remains a significant challenge. Herein, for the first time, to our knowledge, we introduce a system capable of overcoming gravity to achieve light-induced thermal convective motion in air, driven by near-infrared light excitation. The micromotors are composed of spiky, pollen-like ZnO microparticles coated with gold nanoparticles, which interact photothermally with the NIR light, generating a thermal gradient that induces propulsion of the micromotor system. Lanthanide-doped upconverting nanoparticles are deposited onto the micromotor surface to enable nanothermometric monitoring of surface temperature, providing critical information needed to describe the system’s thermal behavior in air. This micromotor platform provides a versatile approach to overcome gravity and induce a controllable movement in a gaseous matrix, opening new opportunities to develop proof-of-concepts and applications using this aerodynamic micromotor approach.

0109ロボット
ad
ad
Follow
ad
タイトルとURLをコピーしました