光・マイクロ波・電子を統合した高精度スペクトロメーター校正法を開発(Bridging light, microwaves and electrons for precision calibration)

2025-10-29 スイス連邦工科大学ローザンヌ校(EPFL)

スイス連邦工科大学ローザンヌ校(EPFL)のトビアス・キッペンベルク教授らは、電子分光器を従来より20倍高精度に校正できる新技術を開発した。光周波数コムを基準にマイクロ波・光・自由電子領域を橋渡しするもので、電子エネルギー損失分光(EELS)の精度向上を実現する。研究では、窒化シリコン製マイクロ共振器チップを電子顕微鏡内に組み込み、レーザー光と自由電子の相互作用により電子スペクトルをコム状に変調。この電子スペクトルを解析することで分光器の系統誤差を検出・補正できた。さらに電子のみで光の周波数を算出できることも示された。ナノスケール材料の振動・電子状態解析や量子効果研究に新たな基準を提供する成果である。論文は『Nature Communications』誌に掲載。

光・マイクロ波・電子を統合した高精度スペクトロメーター校正法を開発(Bridging light, microwaves and electrons for precision calibration)
Photograph of the photonic chip mounted on a custom holder. Credit: Yang et al 2025.

<関連情報>

マイクロ波、光、自由電子領域にわたる周波数計測の統一 Unifying frequency metrology across microwave, optical, and free-electron domains

Yujia Yang,Paolo Cattaneo,Arslan S. Raja,Bruce Weaver,Rui Ning Wang,Alexey Sapozhnik,Fabrizio Carbone,Thomas LaGrange & Tobias J. Kippenberg
Nature Communications   Published:24 September 2025
DOI:https://doi.org/10.1038/s41467-025-62808-5

Abstract

Frequency metrology lies at the heart of precision measurement. Optical frequency combs provide a coherent link uniting the microwave and optical domains in the electromagnetic spectrum, with profound implications in timekeeping, sensing and spectroscopy, fundamental physics tests, exoplanet searches, and light detection and ranging. Here, we extend this frequency link to free electrons by coherent modulation of the electron phase by a continuous-wave laser locked to a fully stabilized optical frequency comb. Microwave frequency standards are transferred to the optical domain via the frequency comb, and are further imprinted in the electron spectrum by optically modulating the electron phase with a photonic chip-based microresonator. As a proof-of-concept demonstration, we apply this frequency link in the calibration of an electron spectrometer and verify its precision by measuring the absolute optical frequency. This approach achieves a 20-fold improvement in the accuracy of electron spectroscopy, relevant for investigating low-energy excitations in quantum materials, two-dimensional materials, nanophotonics, and quantum optics. Our work bridges frequency domains differed by a factor of  ~ 1013 and carried by different physical objects, establishes a spectroscopic connection between electromagnetic waves and free-electron matter waves, and has direct ramifications in ultrahigh-precision electron spectroscopy.

0110情報・精密機器
ad
ad
Follow
ad
タイトルとURLをコピーしました