有機半導体で従来比10倍となる100cm2V-1s-1超の移動度を達成~熱振動を制御した分子設計最適化と次世代デバイス応用に期待~

2025-10-02 東京大学,科学技術振興機構

東京大学大学院新領域創成科学研究科の研究チームは、有機半導体材料の分子設計を最適化し、従来の約10倍となる移動度100 cm²/V·sを達成した。有機半導体は柔軟で低コストだが、熱振動による電子伝導の阻害が課題だった。本研究では熱振動を抑制する分子構造を導入し、電子の流れを効率化。成果は次世代フレキシブルデバイスや高性能有機トランジスタへの応用が期待される。

有機半導体で従来比10倍となる100cm2V-1s-1超の移動度を達成~熱振動を制御した分子設計最適化と次世代デバイス応用に期待~熱振動抑制により100 cm2V-1s-1を超える移動度を達成

<関連情報>

歪んだ有機半導体で100 cm2 V −1s−1を超えるホール移動度を観測 Hall mobility exceeding 100 cm2 V−1 s−1 observed in strained organic semiconductors

Tomoki Furukawa, Naotaka Kasuya, Hideaki Takayanagi, Shun Watanabe, and Jun Takeya
Science Advances  Published:1 Oct 2025
DOI:https://doi.org/10.1126/sciadv.aea1634

Abstract

A highly periodic electrostatic potential and coherent band transport can emerge in organic molecular crystals, despite weak van der Waals interactions. Although charge carrier mobility in single-crystalline organic semiconductors (OSCs) reaches 10 square centimeters per volt per second (cm2 V−1 s−1), it is predominantly limited by molecular vibrations excited at room temperature. The extent to which mobility in single-crystalline OSCs can be increased remains a central question. Here, we demonstrate charge transport in a clean two-dimensional hole gas (2DHG) in uniaxially strained, single-crystalline OSCs at cryogenic temperatures, with minimized lattice vibrations. Hall effect measurements reveal a mobility of 117 cm2 V−1 s−1 at 2 kelvin under 2.8% compressional strain, with an extraordinarily large piezoresistive effect and low sheet resistivity of 550 ohms, one-fifth of the lowest resistivity in unstrained samples. These clean systems offer opportunities to explore intrinsic strain-induced charge transport physics, where condensed matter phenomena, characterized by weakly bonded molecular orbitals, combine electronic correlation and lattice degrees of freedom.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました