希土類元素化学における分子のダンス(A molecular dance in rare earth element chemistry)

2025-09-29 アルゴンヌ国立研究所(ANL)

Argonne国立研究所の研究チームは、レアアース元素の抽出・分離過程を分子動力学シミュレーションと量子化学計算で解析し、希土類イオンとリガンドや溶媒との「分子の舞い」と呼ばれる動的相互作用を明らかにした。研究では、イオンが吸着・配位・溶媒和・脱離を繰り返すメカニズムを精密に追跡し、リガンド設計や抽出条件の最適化に有用な知見を獲得。従来の実験主導型手法に対し、計算化学的アプローチを導入することで、希土類の選択的分離や効率的回収への指針を提供できるとされる。本成果は、資源利用の効率化や環境負荷低減につながり、電子廃棄物からの希土類回収や資源供給の安定化にも寄与する可能性がある。

<関連情報>

ランタニド溶媒和自由エネルギー地形のメタダイナミクス研究と分離エネルギー論への洞察 Metadynamics investigation of lanthanide solvation free energy landscapes and insights into separations energetics

Xiaoyu Wang, Allison A. Peroutka, Dmytro V. Kravchuk, Jenifer C. Shafer, Richard E. Wilson and Michael J. Servis
Chemical Science  Published:26 Sep 2024
DOI:https://doi.org/10.1039/D4SC05061D

希土類元素化学における分子のダンス(A molecular dance in rare earth element chemistry)

Abstract

Lanthanide ion solvation chemistry in nonaqueous phases is key to understanding and developing effective separation processes for these critical materials. Due to the complexity and inherent disorder of the solution phase, a comprehensive picture of the solvated metal ion is often difficult to generate solely from conventional spectroscopic approaches and electronic structure calculations, particularly in the extractant phase. In this work, we use classical molecular dynamics (MD) simulation with an advanced sampling technique, metadynamics, supplemented by experimental spectroscopy and speciation analysis, to measure lanthanide solvation free energy landscapes. We define coordination-based collective variables to probe the entire range of solvation configurations in the organic phase of lanthanum (La), europium (Eu), and lutetium (Lu) nitrate salts bound with a commonly used extractant, N,N′-dimethyl, N,N′-dioctylhexylethoxymalonamide (DMDOHEMA). The known lanthanide extraction trend of La ≈ Eu > Lu is readily explained by the measured free energy surfaces, which show consistent DMDOHEMA coordination from La to Eu, followed by loss of DMDOHEMA coordination from Eu to Lu. These simulations suggest how ligand crowding at the metal center can control selectivity, in this case resulting in the opposite extraction trend as observed with other conventional extractants, where the enthalpic contribution from increasing lanthanide charge density across the series dominates the extraction energetics. We also find that the presence of inner-sphere water, verified by time-resolved fluorescence, diversifies the accessible solvation structures. As a result, understanding solvation requires consideration of an entire thermodynamic ensemble, rather than the single dominant lowest-energy structure, as is often considered out of necessity in interpretation of spectroscopic data or in electronic structure-based ligand design approaches. In general, we demonstrate how metadynamics uniquely enables investigation of complex, multidimensional solvation energetic landscapes, and how it can explain selectivity trends where extraction is controlled by more complex mechanisms than simple charge density-based selectivity.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました