新たなハイブリッド手法で道路上のCO2排出をリアルタイム監視(Researchers Accurately Monitor On-Road CO2 Emissions via New Hybrid Framework)

2025-09-14 中国科学院 (CAS)

中国科学院の研究チームは、都市道路上のCO₂排出を高精度かつリアルタイムで把握するための新たなハイブリッド・フレームワークを開発した。従来の排出インベントリーは空間分解能が粗く、道路区間ごとの排出変動や発生源特定が困難だったが、本手法ではPanoptic-AIと移動観測を組み合わせ、パノラマカメラ、温室効果ガス分析器、気象センサーなどを活用して交通量、建築物配置、植生、気象条件を同時に取得・解析。これにより、都市交通ネットワークにおけるCO₂濃度上昇を30メートル解像度で予測可能となった。実証実験では排出源識別精度93%以上を達成し、交通状況や周辺環境が排出を駆動する時空間的ダイナミクスの定量化に成功。深圳での導入例もあり、都市の気候・交通政策に資する応用が期待されている。

新たなハイブリッド手法で道路上のCO2排出をリアルタイム監視(Researchers Accurately Monitor On-Road CO2 Emissions via New Hybrid Framework)
This photo taken on Dec. 27, 2023 shows a car being automatically transported into a stereo garage at Yantai Port in Yantai, east China’s Shandong Province. (Xinhua/Lan Hongguang)

<関連情報>

都市交通ネットワークにおける昼間動態CO2増加予測のためのパノプティックAIと多源観測の統合 Integrating panoptic-AI and multi-source observations for daytime dynamic CO2 increment prediction in urban traffic networks

Yonglin Zhang, Tianle Sun, Li Wang, Bo Huang, Shiguang Xu, Xiaofeng Pan, Xiangyun Xiong, Wanjuan Song, Guoxu Li, Zheng Niu
Sustainable Cities and Society  Available online: 15 August 2025
DOI:https://doi.org/10.1016/j.scs.2025.106730

Highlights

  • Achieve precise daytime hourly predictions of ∆CO2 at a resolution of 30 m.
  • A new multimodal mobile platform oriented towards road ∆CO2 was developed.
  • Panoptic-AI and multimodal fusion can support road ∆CO2 prediction.
  • IML revealed “meteorology-traffic-landscape” nonlinear contributions of road ∆CO2.

Abstract

Urban expansion and population mobility have driven a continuous rise in road CO₂ emissions, posing significant challenges to local climate regulation, public health, and carbon neutrality. The development of precise monitoring methods for performing multi-factor analysis of on-road CO₂ levels is considered of great importance for their effective reduction. Along these lines, in this work, focusing on Shenzhen, a global megacity, a hybrid framework combining Panoptic-Artificial Intelligence (Panoptic-AI) and mobile observation framework was developed to predict the hourly 30-meter resolution of the on-road CO₂ concentration and its increment-∆CO₂ (DTCO₂). Using interpretable machine learning (IML), the nonlinear mechanisms of “meteorology-traffic-landscape” dynamic driving forces were uncovered. The key findings of our work include: 1) The proposed IML model achieved high accuracy in daytime DTCO₂ prediction (R² > 0.93 MAE < 1.3 ppm), addressing spatiotemporal resolution challenges. 2) Meteorological and traffic factors significantly affect DTCO₂, with average traffic density (>7 vehicles/30 m) from static snapshots increasing the CO₂ concentration by ∼40 %. 3) DTCO₂ hotspots cluster around transportation hubs on weekdays and diffuse to suburban areas on weekends. A closed-loop “observation-prediction-decision” framework for high-resolution road CO2 monitoring has also been introduced, offering precise, interpretable, and intelligent support for urban traffic CO2 emission reduction. Our work provides valuable insights into the underlying nonlinear mechanisms, which could be useful for applications including landscape optimization and ventilation corridors, thereby advancing low-carbon urban resilience. It provides a novel perspective for the enhanced management and reduction of CO2 emission in urban road traffic by leveraging multi-source information fusion and AI-driven methods.

1902環境測定
ad
ad
Follow
ad
タイトルとURLをコピーしました