オックスフォードが開発したAIツール、騒がしい空から超新星を発見(AI tool developed at Oxford helps astronomers find supernovae in a sky full of noise)

2025-09-11 オックスフォード大学

オックスフォード大学は、AIツール「Virtual Research Assistant(VRA)」を開発し、超新星探索の効率を大幅に向上させた。ATLAS望遠鏡は一晩で数百件のアラートを生むが多くがノイズで、人手で数時間かけて確認していた。VRAは約1.5万件の学習データと軽量アルゴリズムを用い、候補を真の超新星らしさでランク付けし、複数夜のデータを再評価する機能も備える。2024年12月以降は南アフリカのLesedi天文台と連携し、有望信号を自動で追観測可能になった。導入1年で3万件超を処理し、見逃し率0.08%未満、保持率99.9%以上を達成、人手確認を約85%削減した。2026年に数百万件の夜間アラートを生むVera Rubin天文台LSSTへの応用が期待される。

オックスフォードが開発したAIツール、騒がしい空から超新星を発見(AI tool developed at Oxford helps astronomers find supernovae in a sky full of noise)
AI tool developed at Oxford helps astronomers find supernovae in a sky full of noise. Credit: NASA, ESA, A. Goobar (Stockholm University), and the Hubble Heritage Team (STScI/AURA)

<関連情報>

ATLAS仮想研究アシスタント The ATLAS Virtual Research Assistant

H. F. Stevance, K. W. Smith, S. J. Smartt, S. J. Roberts, N. Erasmus, D. R. Young, and A. Clocchiatti
The Astrophysical Journal  Published: 2025 September 10
DOI:10.3847/1538-4357/adf2a1

Abstract

We present the Virtual Research Assistant (VRA) of the ATLAS sky survey, which performs preliminary eyeballing on our clean transient data stream. The VRA uses histogram-based gradient-boosted decision tree classifiers trained on real data to score incoming alerts on two axes: “Real” and “Galactic.” The alerts are then ranked using a geometric distance such that the most “real” and “extragalactic” receive high scores; the scores are updated when new lightcurve data is obtained on subsequent visits. To assess the quality of the training we use the recall at rank K, which is more informative to our science goal than general metrics (e.g., accuracy, F1-scores). We also establish benchmarks for our metric based on the pre-VRA eyeballing strategy, to ensure our models provide notable improvements before being added to the ATLAS pipeline. Then, policies are defined on the ranked list to select the most promising alerts for humans to eyeball and to automatically remove bogus alerts. In production the VRA method has resulted in a reduction in eyeballing workload by 85% with a loss of follow-up opportunity <0.08%. It also allows us to automatically trigger follow-up observations with the Lesedi telescope, paving the way toward automated methods that will be required in the era of LSST. Finally, this is a demonstration that feature-based methods remain extremely relevant in our field, being trainable on only a few thousand samples and highly interpretable; they also offer a direct way to inject expertise into models through feature engineering.

0300航空・宇宙一般
ad
ad
Follow
ad
タイトルとURLをコピーしました