高解像度日降水量推定のためのハイブリッドダウンスケーリングモデルの開発(Researchers Develop Hybrid Downscaling Model for High-resolution Daily Rainfall Estimation)

2025-08-25 中国科学院(CAS)

中国科学院山地環境与工程研究所と中山大学、欧州研究機関の共同研究により、高解像度日降水推定のためのハイブリッド・ダウンスケーリング手法「SMPD-MERG」が開発された。この手法は土壌水分データと降水の物理過程を組み合わせ、リモートセンシングと統計的推定を融合。従来の10km解像度を1kmに高精度化し、イベリア中央部の2016〜2018年のデータで有効性を実証。洪水予測や水資源管理、山地災害の早期警報などへの応用が期待される。

<関連情報>

SMPD-MERG:表面土壌水分と多源降水データ統合による高解像度日次降水量推定のためのハイブリッドダウンスケーリングモデル SMPD-MERG: A Hybrid Downscaling Model for High-Resolution Daily Precipitation Estimation via Merging Surface Soil Moisture and Multisource Precipitation Data

Kunlong He; Wei Zhao; Luca Brocca; Pere Quintana-Seguí; Xiaohong Chen
IEEE Transactions on Geoscience and Remote Sensing  Published:16 April 2025
DOI:https://doi.org/10.1109/TGRS.2025.3561253

Abstract:

Currently, the poor spatial resolution (10–50 km) and accuracy of satellite-based precipitation products (SPP) limit their applications at regional scales. To overcome these issues, a hybrid downscaling framework, named soil moisture-based precipitation downscaling and merging (SMPD-MERG) methods, that merge soil moisture-based precipitation downscaling results with European Space Agency (ESA) climate change initiative (CCI) soil moisture product and multisource data from rain gauge measurements and European Center for Medium-Range Weather Forecasts (ECMWFs) ERA5-Land precipitation data with random forest (RF) model was proposed to derive high-resolution and high-accuracy precipitation data at daily scale. The method was successfully applied to the global precipitation measurement (GPM) daily precipitation product and improved its spatial resolution from 10 to 1 km in the central part of the Iberia Peninsula during 2016–2018. The validation with field measurements revealed that the proposed method has good performance with correlation coefficient (CC), relative bias (BIAS), root mean square error (RMSE), and the modified Kling-Gupta efficiency (KGE’) values of 0.94, 1.00%, 1.27 mm, and 0.88, respectively. Meanwhile, the intercomparison with other downscaling algorithms including geographically weighted regression (GWR) and interpolation methods, highlights the significant advantages of the proposed method. It improves the CC from around 0.60 to over 0.90, reducing the RMSE to below 1.30 mm, and decreasing BIAS by nearly an order of magnitude. In general, different from previous empirical downscaling methods, the proposed method not only considers the physical dynamics of the precipitation process but also well integrates the advantage of multisource data. According to the satisfactory downscaling accuracy, this method shows good potential for producing high-quality precipitation data with high spatiotemporal resolution.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました