自己重力を組み込んだ新しいガス降着モデルを提案(Scientists Introduce Model Incorporating Gas Self-Gravity, Resolving Limitations in Bondi Accretion Framework)

2025-08-21 中国科学院(CAS)

中国科学院雲南天文台の焦成良教授らは、古典的ボンディー降着モデルに「降着ガス自身の重力」を組み込んだ新理論を構築した。星形成やブラックホール成長に不可欠な降着現象を、より現実的に扱うことが目的である。研究では球対称降着を自己重力込みで解析し、リラクゼーション法と解析式を併用して効率的に解を得た。モデルの鍵は、ガス密度・音速・外部半径・断熱指数から定義される無次元パラメータβであり、βが大きいほど音速点は中心に近づき降着率が増加する。ただし断熱指数γ=5/3ではガス圧縮の抵抗が強まり、自己重力の効果は相殺され降着率は変化しない。さらにβには上限があり、それを超えると定常降着は破綻し、これはボンヌール-エバート限界と一致する。研究はまた、初期宇宙での超エディントン降着に適用され、超大質量ブラックホール形成における自己重力の重要性を示した。

<関連情報>

自己重力による球対称な蓄積:解析式と数値検証 Spherically Symmetric Accretion with Self-gravity: Analytical Formulae and Numerical Validation

Cheng-Liang Jiao (焦承亮), Er-gang Zhao, Liying Zhu, and Xiang-dong Shi
The Astrophysical Journal  Published: 2025 August 6
DOI:10.3847/1538-4357/adec71

自己重力を組み込んだ新しいガス降着モデルを提案(Scientists Introduce Model Incorporating Gas Self-Gravity, Resolving Limitations in Bondi Accretion Framework)

Abstract

Spherically symmetric accretion incorporating self-gravity constitutes a three-point boundary value problem (TPBVP) governed by constraints at the outer boundary, sonic point, and accretor surface. Previous studies have two limitations: either employing an incorrect formula for self-gravity potential in analytical treatments, or introducing additional input parameters in numerical implementations to circumvent solving the full TPBVP. To address these issues, we present a self-consistent TPBVP formulation, solved using the relaxation method. We also derive approximate analytical formulae that enable rapid estimates of self-gravity effects. Our analysis identifies a dimensionless parameter β三2Gρr2out/a2out  that characterizes the strength of self-gravity, p where  and rout are the mean density and outer radius of the flow, respectively, and aout is the adiabatic sound speed of the external medium. For practical estimation, pmay be approximated by the external medium density ρout. We identify an upper limit for β, beyond which steady accretion becomes unsustainable—a behavior consistent with classical gravitational instability that previous studies failed to capture. The accretion rate enhancement decreases monotonically as the adiabatic index γ increases. For γ = 5/3, self-gravity ceases to augment the accretion rate. These theoretical predictions are validated by our numerical solutions. We further apply our results to two astrophysical scenarios: hyper-Eddington accretion onto supermassive black hole seeds in the early Universe, where self-gravity is significant; and accretion onto stellar-mass objects embedded in active galactic nuclei disks, where self-gravity is non-negligible under certain conditions and should be evaluated using β.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました