大規模天体分類のためのニューラルネットワークを開発(Researchers Develop Neural Network for Large-Scale Celestial Object Classification)

2025-07-22 中国科学院(CAS)

中国科学院雲南天文台の研究チームは、星、銀河、クエーサーの大規模分類を可能にするニューラルネットワークモデルを開発した。形態特徴とスペクトルエネルギー分布(SED)を同時に処理するマルチモーダル構造により、高精度の分類が実現。Sloan Digital Sky SurveyとKilo-Degree Surveyのデータを用いて訓練と検証が行われ、約2,700万の天体が正確に分類された。GaiaやGAMAのデータでも高い精度を示し、既存カタログの誤分類修正にも寄与する可能性が示された。本研究は、中国の国家重点研究開発計画と国家自然科学基金に支援された。

大規模天体分類のためのニューラルネットワークを開発(Researchers Develop Neural Network for Large-Scale Celestial Object Classification)Differences in SEDs, spectroscopic features, and spatial morphologies among various types of celestial objects. From top to bottom, the examples shown correspond to a galaxy, a quasar, and a star. The spectroscopic data are from SDSS, while the SEDs and image data are from the KiDS. (Image by FENG Haicheng)

<関連情報>

ニューラルネットワークに基づくKiDS DR5ソースの形態光度分類:星・クエーサー・銀河の包括的カタログ Morpho-photometric Classification of KiDS DR5 Sources Based on Neural Networks: A Comprehensive Star–Quasar–Galaxy Catalog

Hai-Cheng Feng, Rui Li, Nicola R. Napolitano, Sha-Sha Li, J. M. Bai, Yue Dong, Ran Li, H. T. Liu, Kai-Xing Lu, Zhi-Wei Pan,…
The Astrophysical Journal Supplement Series  Published: 2025 July 7
DOI:10.3847/1538-4365/adde5a

Abstract

We present a novel multimodal neural network (MNN) for classifying astronomical sources in multiband ground-based observations, from optical to near-infrared (NIR), to separate sources in stars, galaxies, and quasars. Our approach combines a convolutional neural network branch for learning morphological features from r-band images with an artificial neural network branch for extracting spectral energy distribution (SED) information. Specifically, we have used nine-band optical (ugri) and NIR (ZYHJKs) data from the Kilo-Degree Survey (KiDS) Data Release 5. The two branches of the network are concatenated and feed into fully connected layers for final classification. We train the network on a spectroscopically confirmed sample from the Sloan Digital Sky Survey crossmatched with KiDS. The trained model achieves 98.76% overall accuracy on an independent testing data set, with F1-scores exceeding 95% for each class. Raising the output probability threshold, we obtain higher purity at the cost of lower completeness. We have also validated the network using external catalogs crossmatched with KiDS, correctly classifying 99.74% of a pure star sample selected from Gaia parallaxes and proper motions, and 99.74% of an external galaxy sample from the Galaxy and Mass Assembly survey, adjusted for low-redshift contamination. We apply the trained network to 27,335,836 KiDS DR5 sources with r ≤ 23 mag to generate a new classification catalog. This MNN successfully leverages both morphological and SED information to enable efficient and robust classification of stars, quasars, and galaxies in large photometric surveys.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました