象型ロボットが生体模倣3Dプリンティングを実演(Elephant robot demonstrates bioinspired 3D printing technology)

2025-07-17 スイス連邦工科大学ローザンヌ校(EPFL)

象型ロボットが生体模倣3Dプリンティングを実演(Elephant robot demonstrates bioinspired 3D printing technology)
The EleBot. 2025 CREATE EPFL CC BY SA 4.0

EPFLのCREATE研究所は、単一素材で柔軟性と剛性を連続的に制御可能な発泡ラティス構造を開発し、生体模倣ロボット「EleBot」として実証した。異なるセル構造(BCCセルとX‑cubeセル)を組み合わせることで、筋肉や骨のような物性差を空間的に再現可能。象の鼻を模した柔軟な部位と剛性の高い脚部を一体構造で構築し、数千万通りの構成が設計可能。超軽量かつ高強度で、センサーや防水機能の統合も可能。水中ロボット、医療機器、建築資材などへの応用が期待される。

<関連情報>

格子構造の筋骨格ロボット:プログラム可能な幾何学的トポロジーと異方性を利用する Lattice structure musculoskeletal robots: Harnessing programmable geometric topology and anisotropy

Qinghua Guan, Benhui Dai, Hung Hon Cheng, and Josie Hughes
Science Advances  Published:16 Jul 2025
DOI:https://doi.org/10.1126/sciadv.adu9856

Abstract

Natural musculoskeletal systems combine soft tissues and rigid structures to achieve diverse mechanical behaviors that are both adaptive and precise. Inspired by these systems, we propose a programming method for designing bioinspired soft-rigid robotic structures using lattice geometries made from a single material. By introducing previously unknown approaches to the geometric design of unit cells within lattice structures—based on continuous blending and superposition of existing lattice geometries—we can precisely tune stiffness and anisotropy. These designs enable the creation of three-dimensional structures with spatially varying mechanical properties, ranging from tissue-like compliance to rigid, bone-like load-bearing capabilities. Using these methods, we fabricated a musculoskeletal-inspired tendon-driven robotic elephant that integrates joints with programmable bending profiles, achieving a continuously soft trunk. Our lattice geometry generation techniques allow for over 1 million discrete configurations and infinite geometric variations, offering a scalable solution for designing lightweight, adaptable robots.

0109ロボット
ad
ad
Follow
ad
タイトルとURLをコピーしました