スマートツールでグリーン輸送システムを最適化: 持続可能な未来への使命(Optimising green transport systems with smart tools: A mission to power a sustainable future)

2025-07-01 シンガポール国立大学(NUS)

スマートツールでグリーン輸送システムを最適化: 持続可能な未来への使命(Optimising green transport systems with smart tools: A mission to power a sustainable future)NUS researchers are developing smart frameworks to empower the sustainable deployment of clean technologies like electric buses and renewable energy.

シンガポール国立大学(NUS)のスリニバサン教授は、AIと自然の法則に基づく最適化手法を用いて、再生可能エネルギーと電動バスの効率的な導入を目指すスマートツールを開発しています。彼女の研究は、バッテリー容量や電力網の制限下で、充電スケジュールや車両配備、充電器配置の最適化を行う三つのモジュールで構成された枠組みを提案し、ライフサイクルコストを38.2%削減、バッテリー劣化コストを最大90.2%削減する成果を上げました。また、EVが電力を供給可能にする「V2G」技術も開発中です。技術面に加え、消費者の理解・信頼・受容性を重視し、持続可能な未来に向けた社会全体の移行を支援しています。

<関連情報>

電気バスシャトルフリートの統合計画と運用のためのマルチモジュールモデリングと最適化フレームワーク A Multi-Module Modeling and Optimization Framework for Integrated Planning and Operation of Electric Bus Shuttle Fleets

Can Berk Saner; Anupam Trivedi; Dipti Srinivasan
IEEE Transactions on Intelligent Transportation Systems  Published:21 August 2024
DOI:https://doi.org/10.1109/TITS.2024.3440355

Abstract:

Amidst the global shift towards the electrification of mass transportation, the effective long- and short-term planning of electric buses (e-buses) is gaining precedence due to challenges such as limited driving range, charging infrastructure requirements, charging costs, and battery lifetime. In this work, we propose a three-module modeling and optimization framework for strategic, tactical, and operational planning of multi-depot e-bus shuttle fleets by developing a series of mixed-integer programming models. The vehicle scheduling module determines e-bus deployment and trip assignments, ensuring feasible service while leveling energy consumption and mitigating battery degradation across the fleet. The charger deployment and charging planning module determines the number of chargers to deploy at depots and e-bus charging schedules to minimize life cycle costs. This module integrates an e-bus charging model that accounts for limited charger availability and practical considerations such as minimum charging duration, charger recovery period, and out-of-office hours, along with a neural network-based battery degradation model to minimize degradation costs and enable uniform battery aging. Finally, the online charging scheduling module updates the charging schedules to handle uncertainties in trip energy consumption. Case studies on a university campus shuttle e-bus network demonstrate a life cycle cost reduction of up to 38.2%, including savings on charger procurement, electricity, and battery degradation. Moreover, the proposed framework facilitates up to a 90.2% decrease in degradation costs and up to a 92.2% reduction in aging non-uniformity, maintaining cost optimality under uncertainties with a deviation of less than 1.5% compared to an oracle model in randomly generated scenarios.

0108交通物流機械及び建設機械
ad
ad
Follow
ad
タイトルとURLをコピーしました