金属3Dプリンターが切り開くモノづくりの新時代 純金属混合粉末×金属3Dプリンターでハイエントロピー合金を実現 ~ワンプロセスで合金製造する新手法~

ad

2025-03-12 大阪大学,科学技術振興機構

大阪大学大学院工学研究科の小笹良輔助教、Gökçekaya Özkan助教、中野貴由教授らの研究グループは、金属3Dプリンターを用いて、従来の鋳造法では製造が困難だったハイエントロピー合金の作製に成功しました。 5種類の純金属粉末を同時に溶融し、金属3Dプリンターの高い冷却速度(最大10^7度/秒)を活用することで、均一なハイエントロピー合金を実現しました。さらに、凝固時の熱流の方向を制御することで、特定の結晶方位を持つ合金を作製し、高い強度と柔軟性を併せ持つ特性を確認しました。この手法により、合金化、組織制御、形状作製をワンプロセスで行うことが可能となり、製造リードタイムやコストの削減が期待されます。

​<関連情報>

レーザー粉末床溶融法による非キアトミックTiNbMoTaW耐火バイオ高エントロピー合金のin-situ合金化: 微視的偏析の抑制と組織形成の達成 In-situ alloying of nonequiatomic TiNbMoTaW refractory bio-high entropy alloy via laser powder bed fusion: Achieving suppressed microsegregation and texture formation

Yong Seong Kim, Ozkan Gokcekaya, Kazuhisa Sato, Ryosuke Ozasa, Aira Matsugaki, Takayoshi Nakano
Materials & Design  Available online: 9 March 2025
DOI:https://doi.org/10.1016/j.matdes.2025.113824

Graphical abstract

金属3Dプリンターが切り開くモノづくりの新時代 純金属混合粉末×金属3Dプリンターでハイエントロピー合金を実現 ~ワンプロセスで合金製造する新手法~

Highlights

  • Successful fabrication of in-situ alloyed Ti1(NbMoTa)2W0.5 HEA by LPBF.
  • Micro-segregation was suppressed with alloy design and remelting by a double scan strategy.
  • The crystallographic texture was controlled by epitaxial growth across the melt pool.
  • Solid solution strengthening was achieved with in-situ alloyed elemental powders.
  • In-situ alloyed Ti1(NbMoTa)2W0.5 HEA showed biocompatibility comparable to CP-Ti.

Abstract

High-entropy alloys (HEAs) have attracted considerable attention owing to their excellent properties. However, the severe segregation of the constituent elements remains a common challenge in refractory HEAs. Recently, an approach to suppress segregation was proposed using laser powder bed fusion (LPBF) owing to the ultra-high cooling rates during solidification. Despite the advantages of LPBF, the persistent microsegregation between the dendritic and interdendritic regions of refractory HEAs and costly gas atomization process hinder the further development. To address these challenges, a novel nonequiatomic TiNbMoTaW refractory HEA was designed to minimize the difference between the liquidus and solidus temperatures to prevent segregation and phase separation for a better biological performance. In-situ alloying was implemented instead of costly and time-consuming gas atomization process. The segregation of constituent elements was suppressed by remelting, resulted in epitaxial growth and development of crystallographic texture, consequently reducing residual stress. The mechanical properties were improved due to the increase of solid solution strengthening and densification. It showed superior mechanical strength and equivalent biocompatibility compared to conventional biomaterials, indicating its superiority as a biomaterial. This study represents the first successful control of crystallographic texture through in-situ alloying of BioHEAs for next-generation biomaterials.

0700金属一般
ad
ad
Follow
ad
タイトルとURLをコピーしました