固形廃棄物管理の予測を改善する新しい研究(New Research Improves Predictions for Solid Waste Management)

ad

2025-01-07 ノースカロライナ州立大学(NCState)

固形廃棄物管理の予測を改善する新しい研究(New Research Improves Predictions for Solid Waste Management)Photo credit: Nareeta Martin.

ノースカロライナ州立大学(NC State University)の研究者たちは、郡レベルでの廃棄物の総量予測に加え、廃棄物の詳細な内訳を予測する新しい手法を開発しました。この手法により、リサイクルや埋立処理の効率性が向上し、持続可能な廃棄物管理の実現に寄与することが期待されます。研究チームは、従来の総量予測モデルに加え、廃棄物の構成要素を詳細に予測する補完的なモデルを組み合わせることで、廃棄物の種類や量を高精度で予測することに成功しました。これにより、廃棄物管理者はリサイクル可能な素材やコンポスト可能な素材の量を事前に把握し、適切なインフラ計画や持続可能な運用の実現が可能となります。

<関連情報>

郡スケールでの固形廃棄物の組成予測 Predicting the composition of solid waste at the county scale

Joshua T. Grassel, Adolfo R. Escobedo, Rajesh Buch
Waste Management  Available online: 17 December 2024
DOI:https://doi.org/10.1016/j.wasman.2024.12.002

Highlights

  • Novel methodology for predicting material-level MSW using waste compositions.
  • Compiled and harmonized waste characterization studies into a benchmark dataset.
  • Derivation of a LASSO model that predicts MSW composition at the county level.
  • Studies demonstrating the applicability of the methodology to yield waste insights.

Abstract

The primary goals of this paper are to facilitate data-driven decision making in solid waste management (SWM) and to support the transition towards a circular economy, by providing estimates of the composition and quantity of waste. To that end, it introduces a novel two-phase strategy for predicting municipal solid waste (MSW). The first phase predicts the waste composition, the second phase predicts the total quantity, and the two predictions are combined to give a comprehensive waste estimate. This novel approach overcomes limitations of existing methods that rely on material-specific quantity data, facilitating the prediction of dozens of waste material streams; existing methods typically classify MSW into no more than 10 categories, and often reduce it to a single aggregate total. To implement this strategy, the proposed study utilizes publicly available data encompassing demographic, economic, and spatial predictors, in conjunction with waste sampling reports. In addition, it develops a Least Absolute Shrinkage and Selection Operator (LASSO) regression model to estimate the MSW composition across 43 comprehensive material categories. The LASSO model is designed to predict MSW composition distinctly from quantity. The model’s capability is demonstrated through case studies, showcasing its potential to provide detailed waste estimates at the U.S. county level.

1103廃棄物管理
ad
ad
Follow
ad
タイトルとURLをコピーしました