宇宙ゴミを追跡して水塊を観測するレーザー計測 (Laser Measurements to Track Space Debris and Observe Water Masses)

ad

2024-10-30 オーストリア・グラーツ工科大学(TU Graz)

グラーツ工科大学の研究者たちは、衛星レーザー測距(SLR)技術を用いて、地球の重力場の高精度な計測と、宇宙空間における人工衛星やスペースデブリの軌道予測の精度向上を実現しました。SLRは、レーザーを衛星に照射し、反射光の往復時間を測定することで、衛星の位置をセンチメートル単位で特定する手法です。この技術により、地球上の水質量の変動を詳細に把握できるとともに、宇宙空間の安全性向上に寄与する正確な軌道予測が可能となります。

<関連情報>

GRACEとGRACE Follow-Onのギャップを埋める、衛星間高低速追跡データと衛星レーザー測距の組み合わせ Bridging the gap between GRACE and GRACE Follow-On by combining high–low satellite-to-satellite tracking data and satellite laser ranging

Matthias Weigelt,Adrian Jäggi,Ulrich Meyer,Daniel Arnold,Torsten Mayer-Gürr,Felix Öhlinger,Krzysztof Sośnica,Sahar Ebadi,Steffen Schön & Holger Steffen
Journal of Geodesy  Published:13 September 2024
DOI:https://doi.org/10.1007/s00190-024-01888-5

宇宙ゴミを追跡して水塊を観測するレーザー計測 (Laser Measurements to Track Space Debris and Observe Water Masses)

Abstract

The satellite missions GRACE and GRACE Follow-On have undoubtedly been the most important sources to observe mass transport on global scales. Within the Combination Service for Time-Variable Gravity Fields (COST-G), gravity field solutions from various processing centers are being combined to improve the signal-to-noise ratio and further increase the spatial resolution. The time series of monthly gravity field solutions suffer from a data gap of about one year between the two missions GRACE and GRACE Follow-On among several smaller data gaps. We present an intermediate technique bridging the gap between the two missions allowing (1) for a continued and uninterrupted time series of mass observations and (2) to compare, cross-validate and link the two time series. We focus on the combination of high-low satellite-to-satellite tracking (HL-SST) of low-Earth orbiting satellites by GPS in combination with satellite laser ranging (SLR), where SLR contributes to the very low degrees and HL-SST is able to provide the higher spatial resolution at an lower overall precision compared to GRACE-like solutions. We present a complete series covering the period from 2003 to 2022 filling the gaps of GRACE and between the missions. The achieved spatial resolution is approximately 700 km at a monthly temporal resolutions throughout the time period of interest. For the purpose of demonstrating possible applications, we estimate the low degree glacial isostatic adjustment signal in Fennoscandia and North America. In both cases, the location, the signal strength and extend of the signal coincide well with GRACE/GRACE-FO solutions achieving 99.5% and 86.5% correlation, respectively.

0300航空・宇宙一般
ad
ad
Follow
ad
タイトルとURLをコピーしました