イリノイ州の新しい研究では、スーパー雑草と戦うためにロボット除草の導入を検討(New Illinois study explores adoption of robotic weeding to fight superweeds)

ad

2024-10-30 イリノイ大学アーバナ・シャンペーン校

イリノイ大学の研究によると、除草剤耐性のある「スーパー雑草」対策として農業用ロボットが有効です。除草剤への依存により耐性雑草が増え、現在の除草手法が脅かされていますが、AI搭載のロボットは雑草種子の発芽を防ぎ、効率的で環境に優しい除草が可能です。研究では、長期的視点の農家は低い耐性レベルでもロボットを早期採用し、短期的視点の農家は除草剤が効果を失うまで使用を続けることが示されました。

<関連情報>

ロボットによる除草剤耐性雑草管理: 雑草生態経済モデル Herbicide-resistant weed management with robots: A weed ecological–economic model

Chengzheng Yu, Madhu Khanna, Shady S. Atallah, Saurajyoti Kar, Muthukumar Bagavathiannan, Girish Chowdhary
Agricultural Economics  Published: 02 October 2024
DOI:https://doi.org/10.1111/agec.12856

イリノイ州の新しい研究では、スーパー雑草と戦うためにロボット除草の導入を検討(New Illinois study explores adoption of robotic weeding to fight superweeds)

Abstract

The heavy reliance on herbicides for weed control has led to an increase in resistant weeds in the United States. Robotic weed control is emerging as an alternative technology for removing weeds mechanically using artificial intelligence. We develop an integrated weed ecological and economic dynamic (I-WEED) model to examine the biophysical and economic drivers of adopting robotic weed management and simulate the optimal timing and intensity of robotic adoption within and across growing seasons. We specify a cohort-based weed growth model that relates yield damages to effective weed density and treats the susceptibility of weeds to herbicides as a renewable resource that can be regenerated by using mechanical weeding robots, due to a fitness cost that makes resistant weeds less prolific. Compared to myopic weed management which ignores resistance development, forward-looking management leads to earlier adoption of robots and treating robots as complements instead of substitutes to herbicides. This weed management results in adopting fewer robots, deploying robots on a smaller portion of the land, higher profitability, and lower yield loss in the long run, relative to myopic management. Counterintuitively, myopic management leads to a lower resistance level through its higher robot adoption intensity. We also find that a lower level of initial weed seed resistance and/or a higher fitness cost result in a higher level of resistance because they create incentives for farmers to delay the adoption of robotic weed control. Our analysis shows the importance of jointly considering the interactions between weed ecology and economics in analyzing the incentives and effects of robotic weed management on weed resistance.

1200農業一般
ad
ad
Follow
ad
タイトルとURLをコピーしました