アルゴンヌの科学者、AIを使って炭素捕獲用の新材料を特定(Argonne scientists use AI to identify new materials for carbon capture)

ad

2024-02-14 アルゴンヌ国立研究所(ANL)

環境に優しい金属有機フレームワーク材料を特定するための新しい機会が、生成型AI技術、機械学習、シミュレーションによって研究者に提供されています。これには、人工知能によって予測された構造を分子動力学シミュレーションで評価し、最も有望な候補をスクリーニングするというアプローチが含まれています。この取り組みは、MOFの設計と合成に革新をもたらす可能性があります。

<関連情報>

炭素捕獲用有機金属骨格設計のための分子拡散モデルに基づく生成的人工知能フレームワーク A generative artificial intelligence framework based on a molecular diffusion model for the design of metal-organic frameworks for carbon capture

Hyun Park,Xiaoli Yan,Ruijie Zhu,Eliu A. Huerta,Santanu Chaudhuri,Donny Cooper,Ian Foster & Emad Tajkhorshid
Communications Chemistry  Published:14 February 2024
DOI:https://doi.org/10.1038/s42004-023-01090-2

アルゴンヌの科学者、AIを使って炭素捕獲用の新材料を特定(Argonne scientists use AI to identify new materials for carbon capture)

Abstract

Metal-organic frameworks (MOFs) exhibit great promise for CO2 capture. However, finding the best performing materials poses computational and experimental grand challenges in view of the vast chemical space of potential building blocks. Here, we introduce GHP-MOFassemble, a generative artificial intelligence (AI), high performance framework for the rational and accelerated design of MOFs with high CO2 adsorption capacity and synthesizable linkers. GHP-MOFassemble generates novel linkers, assembled with one of three pre-selected metal nodes (Cu paddlewheel, Zn paddlewheel, Zn tetramer) into MOFs in a primitive cubic topology. GHP-MOFassemble screens and validates AI-generated MOFs for uniqueness, synthesizability, structural validity, uses molecular dynamics simulations to study their stability and chemical consistency, and crystal graph neural networks and Grand Canonical Monte Carlo simulations to quantify their CO2 adsorption capacities. We present the top six AI-generated MOFs with CO2 capacities greater than 2m mol g−1, i.e., higher than 96.9% of structures in the hypothetical MOF dataset.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました