化学者がキラル構造を作る新しい方法を開発(Chemists develop new method to create chiral structures)

ad

2023-06-29 カリフォルニア大学リバーサイド校(UCR)

化学者がキラル構造を作る新しい方法を開発(Chemists develop new method to create chiral structures)
(Jonas Reuel/iStock/Getty Images Plus)

◆カリフォルニア大学リバーサイド校の研究チームは、磁場の配布自体がキラリティを持つことを発見しました。彼らの方法では、キラルな構造を磁気ナノ粒子に誘導することができます。
◆この研究結果は、光学効果や偽造防止技術に応用可能であり、がんやウイルス感染などの疾患検出にも役立つ可能性があります。さらに、この技術はキラリティを瞬時に調整することができます。

<関連情報>

キラル超構造への磁気アセンブリーアプローチ A magnetic assembly approach to chiral superstructures

Zhiwei Li,Qingsong Fan,Zuyang Ye,Chaolumen Wu,Zhongxiang Wang,Yadong Yin
Science  Published:29 Jun 2023
DOI:https://doi.org/10.1126/science.adg2657

Editor’s summary

The assembly of particles into chiral superstructures is usually directed with chiral templates such as DNA, which bind the particles, or by using lithographic methods. Li et al. showed that applying the chiral quadrupole field generated by permanent magnets to dispersed magnetic nanoparticles creates long-range chiral superstructures that adopt the field chirality. The tunability of the field enables control over the superstructure handedness, chirality, and pitch. Hybrid particles composed of gold nanorods and magnetite displayed tunable circular dichroism and optical rotary dispersion signals. —Phil Szuromi

Abstract

Colloidal assembly into chiral superstructures is usually accomplished with templating or lithographic patterning methods that are only applicable to materials with specific compositions and morphologies over narrow size ranges. Here, chiral superstructures can be rapidly formed by magnetically assembling materials of any chemical compositions at all scales, from molecules to nano- and microstructures. We show that a quadrupole field chirality is generated by permanent magnets caused by consistent field rotation in space. Applying the chiral field to magnetic nanoparticles produces long-range chiral superstructures controlled by field strength at the samples and orientation of the magnets. Transferring the chirality to any achiral molecules is enabled by incorporating guest molecules such as metals, polymers, oxides, semiconductors, dyes, and fluorophores into the magnetic nanostructures.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました