東北大学

身体に宿る”知能”を活かすミズクラゲサイボーグ~小さな AI モデルによる泳ぎの予測に成功!~ 0109ロボット

身体に宿る”知能”を活かすミズクラゲサイボーグ~小さな AI モデルによる泳ぎの予測に成功!~

2025-05-26 東北大学東北大学大学院工学研究科の大脇大准教授らの研究チームは、ミズクラゲの自発的な泳ぎのリズムが自己組織化臨界現象に基づくことを初めて観測し、クラゲの筋肉に電気刺激を与えることで泳ぎを誘導し、その動きを小型AIモデル...
ぐるぐる回る分子の“向き”と“形”を制御した電気応答を実現 ~従来より高密度に情報記憶できる素子への応用に期待~ 1600情報工学一般

ぐるぐる回る分子の“向き”と“形”を制御した電気応答を実現 ~従来より高密度に情報記憶できる素子への応用に期待~

2025-05-23 東北大学,金沢大学,科学技術振興機構2025年5月25日、東北大学と金沢大学の研究チームは、科学技術振興機構(JST)と共同で、柔粘性結晶における新たな電気応答現象を発見しました。この物質は、固体のような形状を保ちなが...
鉄系超伝導体を用いて強磁場下で超伝導ダイオード効果を観測~ボルテックスに由来する整流効果の仕組みを解明~ 0403電子応用

鉄系超伝導体を用いて強磁場下で超伝導ダイオード効果を観測~ボルテックスに由来する整流効果の仕組みを解明~

2025-05-14 東北大学東北大学金属材料研究所の野島勉准教授らの研究チームは、鉄系超伝導体Fe(Se,Te)を用いて、強磁場下での超伝導ダイオード効果の観測に成功しました。この効果は、電流の向きによって超伝導状態と常伝導状態が切り替わ...
ad
次世代形状記憶合金の原子配列と原子の動きの観察に成功~より高性能の合金開発の指針に~ 0703金属材料

次世代形状記憶合金の原子配列と原子の動きの観察に成功~より高性能の合金開発の指針に~

2025-04-25 東北大学​東北大学の研究グループは、九州大学および古河テクノマテリアルと共同で、次世代形状記憶合金であるCu-Al-Mn系合金の原子配列と原子の動きを観察することに成功しました。​X線吸収分光法(XAS)と第一原理計算...
バルクでは磁石に付かない物質を原子層厚の薄膜で磁石に変換 ~次世代スピントロニクスへの応用に期待~ 1700応用理学一般

バルクでは磁石に付かない物質を原子層厚の薄膜で磁石に変換 ~次世代スピントロニクスへの応用に期待~

2025-04-21 東北大学東北大学を中心とする研究チームは、通常は磁石に反応しない三セレン化二クロム(Cr₂Se₃)が、原子層レベルの薄膜としてグラフェン上に成長させることで強磁性を示すことを発見した。高輝度放射光X線やマイクロARPE...
電子機器内の熱流を自在に制御できるメカニズムを発見~次世代デバイスの性能向上と省エネ化に期待~ 0400電気電子一般

電子機器内の熱流を自在に制御できるメカニズムを発見~次世代デバイスの性能向上と省エネ化に期待~

2025-04-14 東北大学東北大学の小野円佳教授らの研究チームは、アモルファスシリカ(SiO₂)薄膜の熱伝導率を制御する新メカニズムを発見しました。基板と相互作用することで、Si-O結合のリング構造や振動特性が変化し、熱の流れが調整可能...
半導体内の電子スピン波を自由に制御できる技術を確立~電子スピン波を活用する次世代情報処理基盤を開拓~ 0403電子応用

半導体内の電子スピン波を自由に制御できる技術を確立~電子スピン波を活用する次世代情報処理基盤を開拓~

2025-04-10 東北大学ChatGPT:​東北大学大学院工学研究科の研究チームは、半導体内の電子スピン波の波長や空間構造を自由に制御する新たな手法を開発しました。​従来の技術では、電子スピン波の波数制御に制約がありましたが、今回、プロ...
安価な顔料で高速・高効率・高耐久な CO2→CO 変換を実現~温室効果ガスの削減と有効活用に繋がることを期待~ 0505化学装置及び設備

安価な顔料で高速・高効率・高耐久な CO2→CO 変換を実現~温室効果ガスの削減と有効活用に繋がることを期待~

2025-04-08 東北大学,北海道大学, AZUL Energy 株式会社​東北大学材料科学高等研究所(WPI-AIMR)の研究チームは、安価な顔料であるコバルトフタロシアニン(CoPc)を用いて、二酸化炭素(CO₂)を一酸化炭素(CO...
リアルな触覚再現技術による、技能教育システム、心拍数共有アプリを開発しました~体で感じる触覚の計測、編集、調整、再生が手軽に実現可能になります~ 1600情報工学一般

リアルな触覚再現技術による、技能教育システム、心拍数共有アプリを開発しました~体で感じる触覚の計測、編集、調整、再生が手軽に実現可能になります~

2025-03-31 新エネルギー・産業技術総合開発機構,東北大学,筑波大学,株式会社AdansonsNEDOのプロジェクトで、産総研、東北大学、筑波大学、Adansonsは、極薄ハプティックMEMS技術を活用したリモート触覚伝達システムを...
完全大気圧下での軟X線光電子分光測定に成功~基礎化学の解明から触媒や燃料電池の開発へ~ 1700応用理学一般

完全大気圧下での軟X線光電子分光測定に成功~基礎化学の解明から触媒や燃料電池の開発へ~

2025-03-27 東京大学,東北大学東京大学と東北大学の研究チームは、世界で初めて完全な大気圧下で軟X線光電子分光測定を実現しました。従来は不可能とされていたこの測定は、2024年運用開始の高輝度放射光施設NanoTerasuを活用し、...
有機材料中の水素と重水素の分布を単一分子スケールで識別することに成功 ~新たな電子線分光技術により、分子や結合位置の特定に効力~ 0500化学一般

有機材料中の水素と重水素の分布を単一分子スケールで識別することに成功 ~新たな電子線分光技術により、分子や結合位置の特定に効力~

2025-03-25 東北大学​東北大学多元物質科学研究所の陣内浩司教授と宮田智衆講師らの研究グループは、独自に開発した電子線分光技術を用いて、有機材料中の水素と重水素の分布を3ナノメートル(nm)の高い空間分解能でイメージングすることに成...
室温で水素ガスと重水素ガスを簡単に分離~冷却不要の省エネルギーな重水素ガス製造技術の実現に期待~ 0500化学一般

室温で水素ガスと重水素ガスを簡単に分離~冷却不要の省エネルギーな重水素ガス製造技術の実現に期待~

2025-03-03 東北大学​東北大学大学院理学研究科の研究グループは、マンガン(Mn)錯体を用いて、室温で水素ガス(H₂)と重水素ガス(D₂)を効率的に分離する技術を開発しました。​従来、D₂ガスの製造は-250℃での液体水素の蒸留が必...
ad
タイトルとURLをコピーしました