0501セラミックス及び無機化学製品

原子空孔の配列を制御する新手法の発見 0501セラミックス及び無機化学製品

原子空孔の配列を制御する新手法の発見

2020-11-24 京都大学,東京工業大学,東京大学大学院理学系研究科,筑波大学,大阪大学,高エネルギー加速器研究機構,J-PARCセンター,科学技術振興機構ポイント 酸化物合成において応力を与えることで原子空孔面の方向や周期の制御に成功...
AIによる材料特性のリアルタイム予測~材料開発スピードの大幅な向上~ 0501セラミックス及び無機化学製品

AIによる材料特性のリアルタイム予測~材料開発スピードの大幅な向上~

2020-11-13 理化学研究所,グローバルウェーハズ・ジャパン株式会社理化学研究所(理研)革新知能統合研究センターデータ駆動型生物医科学チームの沓掛健太朗研究員、グローバルウェーハズ・ジャパン株式会社の永井勇太主事らの共同研究チームは、...
立体的な曲面構造を持つグラフェンの電子物性を解明 0501セラミックス及び無機化学製品

立体的な曲面構造を持つグラフェンの電子物性を解明

立体デバイスの小型化高密度化に向けた性能指標の提示2020-11-05 東北大学【発表のポイント】 周期構造を備えた立体的な曲面構造を持つグラフェン(*1)のデバイス作製とその特性解明に成功。 グラフェン同士を接触させず綺麗に空間配置するこ...
ad
速い分子だと炭素の網を通り抜ける!? 酸素がグラフェンをすり抜ける現象を発見 0501セラミックス及び無機化学製品

速い分子だと炭素の網を通り抜ける!? 酸素がグラフェンをすり抜ける現象を発見

2020-10-26 東北大学多元物質科学研究所,日本原子力研究開発機構【発表のポイント】 酸素分子がグラフェンを壊すことなく透過することを世界で初めて発見した グラフェンの酸素透過は大気中に存在する時速数千kmの高速分子に起因している 本...
高効率な多接合太陽電池の普及を加速させる技術を開発 0501セラミックス及び無機化学製品

高効率な多接合太陽電池の普及を加速させる技術を開発

低コスト成膜技術で困難だったアルミニウム系材料の太陽電池導入を可能に2020-10-15 産業技術総合研究所ポイント 安価な原料を用いた成膜法では困難だったアルミニウム系材料を高品質に成膜できる装置を開発 今回開発した手法で成膜したアルミニ...
高効率で二酸化炭素を再資源化する光触媒の合成に成功~CO2を「ひかり」と「みず」でリサイクル~ 0501セラミックス及び無機化学製品

高効率で二酸化炭素を再資源化する光触媒の合成に成功~CO2を「ひかり」と「みず」でリサイクル~

2020-10-14 京都大学Rui Pang 工学研究科博士課程学生(現・産業技術総合研究所博士研究員)、寺村謙太郎 同准教授、田中庸裕 同教授の研究グループは、水と光を使って二酸化炭素を有効な資源にリサイクルする光触媒の合成に成功しまし...
高活性な水素発生電極触媒を開発~白金とタングステンの新規な固溶合金ナノ粒子によって~ 0501セラミックス及び無機化学製品

高活性な水素発生電極触媒を開発~白金とタングステンの新規な固溶合金ナノ粒子によって~

2020-10-09 京都大学北川宏 理学研究科教授、小林大哉 日本曹達株式会社研究員らの研究グループは、新たに白金とタングステンの固溶合金ナノ粒子(白金-タングステン固溶合金)の合成に成功しました。また、この白金-タングステン固溶合金を用...
ミリ波・テラヘルツ波を用いた新しい磁気記録方式が登場 !! 0501セラミックス及び無機化学製品

ミリ波・テラヘルツ波を用いた新しい磁気記録方式が登場 !!

集光型ミリ波アシスト磁気記録の原理検証に成功2020-10-08 東京大学大越 慎一(化学専攻 教授)中嶋 誠(大阪大学レーザー科学研究所 光量子ビーム科学研究部門 准教授)白田 雅史(富士フイルム(株)R&D統括本部 記録メディア研究所 ...
ロボットに従来の 72 倍のエネルギーを供給するバイオモーフィックバッテリー 0402電気応用

ロボットに従来の 72 倍のエネルギーを供給するバイオモーフィックバッテリー

(Biomorphic batteries could provide 72x more energy for robots)2020/8/19 アメリカ合衆国・ミシガン大学・ ミシガン大学が、ロボットに統合することでエネルギーをより多量に...
化学物質生成に変革をもたらし得る新しい NAC 触媒 0501セラミックス及び無機化学製品

化学物質生成に変革をもたらし得る新しい NAC 触媒

(New Nitrogen Assembly Carbon catalyst has potential to transform chemical manufacturing)2020/8/26 アメリカ合衆国(DOE)・エイムズ国立研...
光で窒化シリコン薄膜の熱伝導率を倍増 ~半導体デバイスの高性能化につながる新たな放熱機構~ 0403電子応用

光で窒化シリコン薄膜の熱伝導率を倍増 ~半導体デバイスの高性能化につながる新たな放熱機構~

2020-10-01 東京大学ポイント 高集積化の進んだ半導体デバイスでは、熱を運ぶフォノンが散乱されて放熱が困難になるため、高性能化に向けて新しい放熱機構や材料が求められている。 光とフォノンの混合状態である表面フォノンポラリトンを用い、...
高い強誘電性を有する窒化物強誘電体の薄膜化に成功~低消費電力の不揮発性メモリへの応用に期待~ 0400電気電子一般

高い強誘電性を有する窒化物強誘電体の薄膜化に成功~低消費電力の不揮発性メモリへの応用に期待~

2020-09-19 産業技術総合研究所要点 高い強誘電性を有する窒化アルミニウムスカンジウムで、これまでよりさらに強誘電性が高い膜の作製に成功。 10万分の1ミリメートル以下の薄い窒化アルミニウムスカンジウム薄膜でも強誘電性を示すことを世...
ad
タイトルとURLをコピーしました