駆動量子系における加熱過程の特性を解明 (Scientists Characterize Heating Process in a Driven Quantum System)

2026-01-29 中国科学院(CAS)

中国科学院物理研究所の研究者らは、駆動された量子系における加熱過程を実験的に解明した。78量子ビットから成る二次元超伝導量子プロセッサ「Chuang-tzu 2.0」にランダム構造の外部駆動を加え、最大1,000サイクルにわたり時間発展を観測した結果、系が直ちに無秩序な高温状態へ移行せず、エネルギー吸収が一時的に抑制される「前熱化(プレサーマル)状態」が長時間持続することを確認した。このプラトーの寿命は駆動周波数や駆動構造に依存し、明確なべき則に従うことが示された。後期には体積則に従う強い量子もつれが発達し、古典計算手法では再現困難となることから、非平衡多体系の理解と量子シミュレーション研究に重要な知見を提供している。

<関連情報>

78量子ビットプロセッサのランダム多極駆動による予熱化 Prethermalization by random multipolar driving on a 78-qubit processor

Zheng-He Liu,Yu Liu,Gui-Han Liang,Cheng-Lin Deng,Keyang Chen,Yun-Hao Shi,Tian-Ming Li,Lv Zhang,Bing-Jie Chen,Cai-Ping Fang,Da’er Feng,Xu-Yang Gu,Yang He,Kaixuan Huang,Hao Li,Hao-Tian Liu,Li Li,Zheng-Yang Mei,Zhen-Yu Peng,Jia-Cheng Song,Ming-Chuan Wang,Shuai-Li Wang,Ziting Wang,Yongxi Xiao,… Heng Fan
Nature  Published:28 January 2026
DOI:https://doi.org/10.1038/s41586-025-09977-x

駆動量子系における加熱過程の特性を解明 (Scientists Characterize Heating Process in a Driven Quantum System)

Abstract

Time-dependent drives hold promise for realizing non-equilibrium many-body phenomena that are absent in undriven systems1,2,3. Yet, drive-induced heating normally destabilizes the systems4,5, which can be parametrically suppressed in the high-frequency regime by using periodic (Floquet) drives6,7. It remains largely unknown to what extent highly controllable quantum simulators can suppress heating in non-periodically driven systems. Here, using the 78-qubit superconducting quantum processor, Chuang-tzu 2.0, we report the experimental observation of long-lived prethermal phases in many-body systems with tunable heating rates, driven by structured random protocols, characterized by n-multipolar temporal correlations. By measuring both the particle imbalance and subsystem entanglement entropy, we monitor the entire heating process over 1,000 driving cycles and observe the existence of the prethermal plateau. The prethermal lifetime is ‘doubly tunable’: one way by driving frequency, the other way by multipolar order; it grows algebraically with the frequency with the universal scaling exponent 2n + 1. Using quantum-state tomography on different subsystems, we demonstrate a non-uniform spatial entanglement distribution and observe a crossover from area-law to volume-law entanglement scaling. With 78 qubits and 137 couplers in a two-dimensional configuration, the entire far-from-equilibrium heating dynamics are beyond the reach of simulation using tensor-network numerical techniques. Our work highlights superconducting quantum processors as a powerful platform for exploring universal scaling laws and non-equilibrium phases of matter in driven systems in regimes where classical simulation faces formidable challenges.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました