粒状物質の摩擦の二重の役割を解明~摩擦が安定化と流動化をもたらす非平衡力学の新原理~

2026-01-30 東京大学

東京大学の研究グループは、粉体や砂に代表される粒状物質が繰り返しせん断変形を受けた際に示す「エイジング」と「流動化」という一見相反する挙動を、粒子間摩擦を鍵とする非平衡力学として統一的に解明した。大規模数値シミュレーションにより、摩擦係数と変形振幅を制御因子として解析した結果、摩擦が小さい場合には雪崩的再配列による不安定なエイジングが生じ、中程度の摩擦では粒子配置が安定化して吸収状態に至る一方、摩擦がさらに大きくなると微小な連続再配列(クリープ)を通じて再び流動化が促進されることが分かった。すなわち摩擦は、系を安定化させる役割と同時に、準安定状態間の探索経路を増やして流動化を引き起こすという「二重の役割」を持つ。本成果は、粒状物質のみならず、土壌力学や断層ダイナミクスなど広範な非平衡物質の理解と制御に新たな指針を与える。

粒状物質の摩擦の二重の役割を解明~摩擦が安定化と流動化をもたらす非平衡力学の新原理~
摩擦のある粒子の振動下での運動の様子

<関連情報>

粒状材料における摩擦制御リエントラント老化と流動化 Friction-controlled reentrant aging and fluidization in granular materials

Ye Yuan, Walter Kob, and Hajime Tanaka
Proceedings of the National Academy of Sciences  Published:January 27, 2026
DOI:https://doi.org/10.1073/pnas.2528600123

Significance

When a bag of coffee beans is gently tapped, the grains settle into a denser arrangement, yet vigorous shaking makes them looser. Such everyday compaction conceals rich nonequilibrium physics governed by frictional interactions between particles. Using numerical simulations, we show that friction controls how granular materials—such as grains, powders, and soils—become compacted and flow under cyclic shear. Increasing friction first stabilizes the packing and slows down relaxation, but eventually promotes creep-like motion that refluidizes the system and reduces density. This reentrant transition reveals the dual stabilizing and fluidizing roles of friction, linking microscopic particle interactions to macroscopic rheology, uncovering universal principles of aging and flow in disordered, athermal matter.

Abstract

Granular materials densify under repeated mechanical perturbations, nonequilibrium dynamics that underlies many natural and industrial processes. Because granular relaxation is governed by frictional contacts and energy dissipation, this aging behavior fundamentally differs from that of thermal glasses despite their apparent similarities. Here, we uncover how friction controls the compaction dynamics of granular packings subjected to quasistatic cyclic shear. Using discrete element simulations, we construct a dynamic state diagram as a function of strain amplitude and friction, revealing a rich interplay among jamming marginality, stabilization, and fluidization. We identify a friction-dependent crossover strain that separates aging and fluidized regimes, showing reentrant, nonmonotonic behavior: Increasing friction first suppresses fluidization but then promotes it through smooth, creep-like rearrangements. This transition is marked by a shift from intermittent, avalanche-like rearrangements to continuous, diffusive motion. Our findings demonstrate that friction exerts a dual role in granular aging—both stabilizing and fluidizing—thereby uncovering the fundamental nonequilibrium mechanisms that govern compaction, rheology, and aging in athermal disordered systems. More broadly, our results reveal a general principle for how friction governs metastability and flow in athermal matter—from granular and frictional colloids to soils and seismic faults—linking microscopic contact mechanics to macroscopic dynamics.

0102材料力学
ad
ad
Follow
ad
タイトルとURLをコピーしました