熱を一方向にのみ流す新しい熱制御技術を開発 (University of Houston Researchers Bring the Heat)

2026-01-29 ヒューストン大学(UH)

ヒューストン大学(University of Houston)の研究チームは、室温環境で熱を効果的に調節する新技術を開発したと発表した。この技術は、材料内部に設計された微細構造が熱の流れを制御し、温度を一定に保つ性能を持つ点が特徴である。従来の断熱材や冷暖房システムは、外部エネルギーに依存するか熱流を遮断するだけであったのに対し、本技術は能動的に熱を再配分し、過熱や過冷却を軽減する。研究成果は建築・輸送・電子デバイスなど幅広い分野での省エネルギー応用が期待される。特に、極端な温度環境における材料劣化の抑制や快適な室内環境の維持に寄与する可能性がある。また、温度制御が必要なセンサーやバッテリーなどの性能・寿命向上にも貢献し得る。本研究は熱工学と材料科学の融合による次世代熱管理技術として注目される。

熱を一方向にのみ流す新しい熱制御技術を開発 (University of Houston Researchers Bring the Heat)
Professor Bo Zhao shows how his idea works.

<関連情報>

非相反ポラリトンを介した非対称熱伝導率 Asymmetric thermal conductivity mediated by nonreciprocal polaritons

Sina Jafari Ghalekohneh and Bo Zhao
Physical Review B  Published: 14 January, 2026
DOI: https://doi.org/10.1103/pplf-ytqm

Abstract

As a type of energy carrier, polaritons can play a dominant role in the thermal conductivity of nano/microstructures. Here, we report an asymmetric thermal conductivity mediated by polaritons that break the Lorentz reciprocity. In contrast to existing approaches that rely on nonlinearity or time modulation, we leverage nonreciprocal polaritons induced by magnetic effects. We show that nonreciprocal surface plasmon polaritons in time-reversal symmetry-breaking systems, including magneto-optical materials and magnetic Weyl semimetals, can alter the symmetry of thermal conductivity in systems like thin films, resulting in direction-dependent thermal conductivity. Thermal conductivities of reciprocal material systems can also be made asymmetric through near-field coupling with these material systems. In accompaniment with the surging interest in nonreciprocal thermal radiation by polaritons, we extend the role of nonreciprocal polaritons from radiative heat transfer systems to conduction systems, paving the way for next-generation thermal devices and efficient energy management solutions.

 

遠方場における非相反放射面による完全な熱整流と循環 Perfect heat rectification and circulation with nonreciprocal radiative surfaces in the far field

Sina Jafari Ghalekohneh and Bo Zhao
Physical Review Research  Published: 10 November, 2025
DOI: https://doi.org/10.1103/7p58-n6yv

Abstract

Controlling photon-mediated energy flow is central to the future of communications, thermal management, and energy harvesting technologies. Recent breakthroughs have revealed that many-body systems violating Lorentz reciprocity can sustain persistent photon heat current at thermal equilibrium, hinting at a paradigm of heat flow akin to superconductivity. Yet, the behavior of such systems far from equilibrium remains largely unexplored. In this work, we uncover the rich physics of radiative heat transfer in nonequilibrium, far-field many-body systems composed of thermal emitters that break Lorentz reciprocity. We show that the total heat flow naturally decomposes into two distinct components: an equilibrium term, which generates a persistent circulating heat current within the system, and a nonequilibrium term, which governs energy exchange with the environment. Remarkably, while the internal persistent heat current is ever-present, the nonequilibrium contribution can be precisely engineered to achieve perfect heat rectification and circulation. Our results open a route toward designing thermal systems with unprecedented control—unlocking the potential for lossless heat circulation and one-way thermal devices. This fundamentally shifts the landscape for next-generation thermal logic, energy conversion, and photonic heat engines.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました