光共振器アレイにより量子スーパーコンピュータの基盤技術を実証 (Light-Based Platform Sets the Stage for Quantum Supercomputers)

2026-01-28 スタンフォード大学

スタンフォード大学の研究チームは、光を用いた量子スーパーコンピュータ実現に向けた新しい基盤技術として、「光学キャビティアレイ」を提案した。光学キャビティは光を閉じ込めて相互作用を強める装置で、本研究ではそれらを多数連結した配列構造を構築し、光子同士や物質との量子相互作用を高度に制御できることを示した。このプラットフォームでは、量子情報の担い手として光を利用するため、熱雑音に強く、長距離での情報伝送や並列処理に適している点が特徴である。さらに、既存の半導体・フォトニクス技術と高い互換性を持ち、大規模集積化が可能とされる。研究成果は、量子シミュレーションや超高速計算、次世代量子情報処理の実現に向けた重要な一歩であり、光量子技術を用いた計算基盤の新たな方向性を示している。

光共振器アレイにより量子スーパーコンピュータの基盤技術を実証 (Light-Based Platform Sets the Stage for Quantum Supercomputers)
Various optics, including lenses and mirrors, as well as other test equipment which are used for directing and measuring the light collected from atoms in the cavity array microscope. | LiPo Ching for Stanford University

<関連情報>

並列単一原子インターフェース用キャビティアレイ顕微鏡 A cavity-array microscope for parallel single-atom interfacing

Adam L. Shaw,Anna Soper,Danial Shadmany,Aishwarya Kumar,Lukas Palm,Da-Yeon Koh,Vassilios Kaxiras,Lavanya Taneja,Matt Jaffe,David I. Schuster & Jonathan Simon
Nature  Published:28 January 2026
DOI:https://doi.org/10.1038/s41586-025-10035-9

Abstract

Neutral-atom arrays and optical cavity quantum electrodynamics systems have developed in parallel as central pillars of modern experimental quantum science1,2,3. Although each platform has shown exceptional capabilities—such as high-fidelity quantum logic4,5,6,7 in atom arrays and strong light–matter coupling in cavities8,9,10—their combination holds promise for realizing fast and non-destructive atom measurement11, building large-scale quantum networks12,13,14,15,16,17 and engineering hybrid atom–photon Hamiltonians18,19,20. However, so far, experiments integrating the two platforms have been limited to spatially interfacing the entire atom array with one global cavity mode21,22,23,24,25,26, a configuration that constrains addressability, parallelism and scalability. Here we introduce the cavity-array microscope, an experimental platform where each individual atom is strongly coupled to its own individual cavity across a two-dimensional array of over 40 modes. Our approach requires no nanophotonic elements26,27, and instead uses a free-space cavity geometry with intra-cavity lenses28,29 to realize above-unity peak cooperativity with micrometre-scale mode waists and spacings, compatible with typical atom-array length scales while keeping atoms far from dielectric surfaces. We achieve homogeneous atom–cavity coupling and show fast, non-destructive, parallel readout on millisecond timescales, including through a fibre array as a proof of principle for networking applications30. As an outlook, we realize a next-generation iteration of the platform with over 500 cavities and a nearly 10-fold improvement in finesse. Our work unlocks the regime of many-cavity quantum electrodynamics and opens an unexplored frontier of large-scale quantum networking with atom arrays.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました