超流動が停止する瞬間を初観測、超固体の兆候 (Superfluids Are Supposed to Flow Indefinitely. Physicists Just Watched One Stop Moving.)

2026-01-28 コロンビア大学

コロンビア大学の研究チームは、本来は摩擦ゼロで永久に流れ続けるとされる超流動が、特定条件下で自発的に停止する現象を初めて直接観測した。実験では、極低温下で生成した原子ガスの超流動をリング状トラップに閉じ込め、流れの時間発展を精密に測定した。その結果、量子揺らぎや欠陥に起因する量子位相スリップが発生し、エネルギー散逸を伴わずに流れが突然止まることが確認された。これは、超流動の安定性が絶対的ではなく、量子力学的効果によって破られ得ることを示している。本成果は、超伝導や量子流体の基礎理解を深めるとともに、量子センサーや量子情報デバイスなど、超流動・超伝導を利用する将来技術の設計指針に重要な知見を与える。

<関連情報>

二層励起子の超流動から絶縁体への転移の観測 Observation of a superfluid-to-insulator transition of bilayer excitons

Yihang Zeng,Dihao Sun,Naiyuan J. Zhang,Ron Q. Nguyen,Qianhui Shi,A. Okounkova,K. Watanabe,T. Taniguchi,J. Hone,C. R. Dean & J. I. A. Li
Nature  Published:28 January 2026
DOI:https://doi.org/10.1038/s41586-025-09986-w

超流動が停止する瞬間を初観測、超固体の兆候 (Superfluids Are Supposed to Flow Indefinitely. Physicists Just Watched One Stop Moving.)

Abstract

One of the most remarkable properties associated with Bose–Einstein condensation (BEC) is superfluidity, in which the system exhibits zero viscosity and flows without dissipation. The superfluid phase has been observed in wide-ranging bosonic systems spanning naturally occurring quantum fluids, such as liquid helium, to engineered platforms such as bilayer excitons and cold atom systems1,2,3,4. Theoretical works have proposed that interactions could drive the BEC ground state into another exotic phase that simultaneously exhibits properties of both a crystalline solid and a superfluid—termed a supersolid5,6,7,8. Identifying a material system, however, that hosts the predicted BEC solid phase, driven purely by interactions and without imposing an external lattice potential, has remained unknown9,10,11. Here we report observation of a superfluid-to-insulator transition in the layer-imbalanced regime of bilayer magnetoexcitons. Mapping the transport behaviour of the bilayer condensate as a function of density and temperature suggests that the insulating phase is an ordered state of dilute excitons, stabilized by dipole interactions. The insulator melts into a recovered superfluid on increasing the temperature, which could indicate that the low-temperature solid is also a quantum coherent phase.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました