土壌塩分の増加が地球規模の無機炭素貯蔵を変化させることを発見(Increased Soil Salinity Alters Global Inorganic Carbon Storage)

2026-01-22 中国科学院(CAS)

土壌の塩類化が土壌無機炭素(SIC)の貯蔵と分布を体系的に変化させていることを、PNASに掲載された最新の国際研究が明らかにした。中国科学院西北生態環境資源研究所の薛賢(XUE Xian)教授らは、世界各地の0~200cm深までの約9万5千点の土壌データを、土地利用・気候・地形などの情報と統合し、機械学習による空間解析を実施。その結果、乾燥・半乾燥地域では土壌塩分(電気伝導度:EC)の上昇とSICの増加に正の相関が見られることが分かった。ただしこの関係は無制限ではなく、ECが約4 dS/mを超える場合や深層土壌では相関が弱まり、逆転する地域も確認された。将来気候シナリオ解析では、短期的なSIC増加が見込まれる地域がある一方、酸性化や人為攪乱により長期的な炭素損失リスクが高まる可能性も示された。本研究は、土壌塩類化と無機炭素の関係が閾値依存的であることを初めて全球規模で示し、炭素循環評価への重要な制約条件を提供している。

<関連情報>

地球規模の土壌塩分濃度の上昇が無機炭素濃度の変化に及ぼす影響 The contribution of increased global soil salinity to changes in inorganic carbon

Xiaofang Jiang and Xian Xue
Proceedings of the National Academy of Sciences  Published:January 21, 2026
DOI:https://doi.org/10.1073/pnas.2522643123

Significance

Soil inorganic carbon is an important part of the atmospheric carbon cycle. Salinized soil is particularly important to explain the lack of a carbon sink. In this study, we find that soil salinity makes an important contribution to inorganic carbon storage. In many cases, there is a positive correlation between soil salinity and inorganic carbon storage. This is of great significance for coping with global climate change and land degradation.

Abstract

Soil salinization poses a serious environmental challenge, but the impact of global salinity on SIC (Soil Inorganic Carbon) remains unclear. Using 94,515 samples from 0 to 200 cm depth, combined with subregional classification (such as soil type, land use, climate, geomorphology, and soil texture) which helps address spatial heterogeneity, we obtain relatively accurate global distribution data for EC (Electrical Conductivity) and SIC. EC of 0 to 40 cm layer positively influences SIC in most taxonomic subregions, which may be due to the inorganic CO2 absorption influenced by pH and salinity. EC of 80 to 100 cm layer sometimes negatively influences SIC due to the increase of soil depth. When EC is below 4 dS/m, EC often positively influences SIC. When EC increases by 2 to 4 dS/m, the mean global SIC in 0 to 20, 20 to 40, and 80 to 100 cm layers increases from 66.15, 78.75, and 117.39 to 174.47 to 190.38, 132.76 to 154.98, and 149.14 to 161.37 g/kg, respectively. The increase is relatively high but similar overall, which deserves high attention. These findings elucidate the dynamics of carbon–salt coupling in the soil–atmosphere–water system, offering pivotal scientific insights for carbon-neutrality strategies.

1904環境影響評価
ad
ad
Follow
ad
タイトルとURLをコピーしました