化学物質製造の効率を向上させる原子の知見 (Atomic insights could boost chemical manufacturing efficiency)

2025-11-13 アメリカ合衆国・ロチェスター大学

ロチェスター大学の研究チームは、原子スケールでの反応挙動の理解を通じて、化学製造プロセスの効率を大幅に高める新たな知見を示した。研究では、触媒表面で原子や分子がどのように配置・移動し、反応に寄与するかを詳細に解析し、従来見過ごされがちだった微視的な構造変化が反応効率を左右することを明らかにした。これにより、無駄な副反応を抑え、エネルギー消費や原料使用量を削減できる高効率な化学反応設計が可能になる。こうした原子レベルの知見は、医薬品、材料、エネルギー関連化学品など幅広い分野の製造工程に応用が期待され、持続可能で低炭素な化学産業の実現に貢献するとされる。本研究は、基礎物理・化学の成果を産業プロセスへ橋渡しする重要な一歩である。

<関連情報>

タンデム金属-金属酸化物触媒における位置選択的酸化物転位がプロパンの酸化脱水素反応における選択性を向上させる Site-Selective Oxide Rearrangement in a Tandem Metal–Metal Oxide Catalyst Improves Selectivity in Oxidative Dehydrogenation of Propane

Snehitha Srirangam,and Siddharth Deshpande
Journal of the American Chemical Society  Published: October 28, 2025
DOI:https://doi.org/10.1021/jacs.5c13571

Abstract

 

化学物質製造の効率を向上させる原子の知見 (Atomic insights could boost chemical manufacturing efficiency)

Tandem metal–metal oxide catalysts, where metallic and metal oxide active sites work synergistically to drive complex chemistries, have been shown to improve the catalyst stability, activity, and selectivity. Although experimental techniques have probed the active site structure of such catalysts, the key atomic features that drive structure evolution under synthesis and reaction conditions remain poorly understood. Here, we develop a computational framework to elucidate the chemical, geometric, and stoichiometric features of the tandem overcoated catalyst, Pt-InOxHy, in driving the Oxidative Propane Dehydrogenation (ODHP) reaction, integrating propane dehydrogenation (PDH) and Selective Hydrogen Combustion (SHC). Exploration of the chemical space of stable InOxHy phases on Pt relevant to the experimental conditions reveals that the pore formation of the ALD-deposited InOxHy catalyst results from the oxide destabilization on well-coordinated Pt-terrace sites and preferential decoration around under-coordinated Pt-step sites. Reaction mechanistic analysis of the Pt-InOxHy catalyst reveals a dual-site mechanism for SHC, where O* activates on Pt and subsequently forms OH* at the InOxHy sites, facilitating water formation and controlling overoxidation. Further, due to passivation of the under-coordinated Pt-step sites, the Pt-InOxHy surface exhibits similar PDH activity as that on a well-coordinated Pt-terrace surface, in addition to enhanced stability by destabilizing deep-dehydrogenated intermediates. These insights establish a structure–performance relationship of the Pt-InOxHy catalyst for ODHP chemistry, with key features being the extent of reducibility of the metal oxide and the sensitivity of the oxide structure to the oxygen chemical potential. This framework can be extended to other metal–metal oxide systems and complex reactions to develop next-generation tandem catalysts.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました