強誘電体材料がデータ記録の可能性を拡大(Ferroelectric materials boost data storage potential)

2026-01-05 オークリッジ国立研究所(ORNL)

米国オークリッジ国立研究所(ORNL)の研究チームは、強誘電体材料を用いて次世代データ記憶容量を大幅に高める可能性を示した。強誘電体は外部電場によって分極状態を反転でき、その状態を保持できるため、不揮発性メモリ材料として注目されている。本研究では、中性子散乱や先端計測技術を用いて、原子スケールでの分極反転挙動とドメイン構造を詳細に解析し、情報書き込みの安定性と高密度化の鍵となるメカニズムを解明した。その結果、従来よりも小さな領域で安定した分極制御が可能であることが示され、記憶素子の高集積化と低消費電力化が期待される。この成果は、AI・ビッグデータ時代に対応する新しいメモリ技術開発を加速させる。

強誘電体材料がデータ記録の可能性を拡大(Ferroelectric materials boost data storage potential)
An atomic force microscope tip writes data in stable ferroelectric structures, enabling reliable multistate storage at extremely small scales in this illustration. Credit: Morgan Manning/ORNL, U.S. Dept. of Energy

<関連情報>

BiFeO3におけるコンビナトリアル強誘電体閉包ドメインを用いた自律的多状態ナノエンコーディング Autonomous Multistate Nanoencoding Using Combinatorial Ferroelectric Closure Domains in BiFeO3

Marti Checa,Ruben Millan-Solsona,Yongtao Liu,Bharat Pant,Alexander Puretzky,Ye Cao,Puneet Kaur,Jan-Chi Yang,Liam Collins,Neus Domingo,Kyle P. Kelley,Stephen Jesse,and Rama Vasudevan
ACS Nano  Published:Published July 22, 2025
DOI:https://doi.org/10.1021/acsnano.5c07423

Abstract

Recent advances in ferroic materials have identified topological defects as promising candidates for enabling additional functionalities in future electronic systems. The generation of stable and customizable polar topologies is needed to achieve multistates that enable beyond-binary device architectures. In this study, we show how to autonomously pattern on-demand highly tunable striped closure domains in pristine rhombohedral-phase BiFeO3 thin films through precise scanning of a biased atomic force microscopy tip along carefully designed paths. By employing this strategy, we generate and manipulate closed-loop structures with high spatial resolution in an automated manner, allowing the creation of highly tunable and intricate topological domain structures that exhibit distinct polarization configurations without the need for electrode deposition or complex heterostructure growth. As a proof-of-concept for ferroelectric beyond-binary memory devices, we use such topological domains as multistates, engineering an alphabet and automating the symbolic writing/reading process using autonomous microscopy. The resulting information density is compared with that of current commercially available memory devices, demonstrating the potential of ferroelectric topological domains for multistate information storage applications.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました