希少金属プラチナを使わずに効率的な太陽光水素生成を実現(Solar hydrogen can now be produced efficiently without the scarce metal platinum)

2026-01-08 チャルマース工科大学

スウェーデンのチャルマース工科大学の研究チームは、太陽光を利用して水素を効率的に生成する新しい触媒システムを開発した。この技術は、従来の効率的な水素生成に不可欠だった希少で高価な白金(プラチナ)を使わずに、高い光電気化学的性能を実現した点が革新的である。研究では、安価で地球に豊富に存在する元素を基盤としたナノ構造触媒を設計し、太陽光を利用した水分解反応で優れた水素生成効率を達成した。新しい触媒は耐久性と反応性に優れ、白金代替としての実用可能性が確認された。この成果は、化石燃料依存から再生可能エネルギー社会への移行を後押しし、特にクリーン水素の大量生産を促進する可能性が高い。研究は、水素エネルギーのコスト削減と普及拡大に寄与し、脱炭素化とエネルギー安全保障の双方に貢献する。

希少金属プラチナを使わずに効率的な太陽光水素生成を実現(Solar hydrogen can now be produced efficiently without the scarce metal platinum)
A green advance | A research breakthrough opens up for efficient hydrogen production from solar energy – without using the scarce metal platinum. In a reactor at a chemistry laboratory at Chalmers University of Technology, Sweden, bubbles of hydrogen gas can be easily seen with the naked eye as they form – showing that photocatalysis is happening efficiently. Image: Chalmers University of Technology | Mia Halleröd Palmgren

<関連情報>

低コスト共役ポリマーナノ粒子からの高効率な白金フリー光触媒水素発生 Highly Efficient Platinum-Free Photocatalytic Hydrogen Evolution From Low-cost Conjugated Polymer Nanoparticles

Alexandre Holmes, Jingwen Pan, Li Wang, Leandro Franco, Rafael R. Bicudo, Bo Albinsson, C. Moyses Araujo, Weiguo Zhu, Dongbo Wang, Thuc-Quyen Nguyen, Jiefang Zhu, Ergang Wang
Advanced Materials  Published: 22 July 2025
DOI:https://doi.org/10.1002/adma.202507702

Abstract

While the interest in hydrogen photocatalysis from organic semiconductors is rapidly growing, there is a necessity to achieve hydrogen production without platinum (Pt), considering its price, availability and toxicity. In this work, this is demonstrated that high hydrogen evolution reaction (HER) efficiencies can be achieved without the use of Pt. A series of low-cost conjugated polymers are designed around the dibenzothiophene-S,S-sulfoxide (BTSO) unit, and self-assembled as nanoparticles in water via the nanoprecipitation technique. This is highlighted that how side chain engineering, nanoparticle morphology and pH influence the hydrogen evolution rate. Optoelectronic properties are improved through a Donor-Acceptor structure, resulting in an unprecedented hydrogen evolution reaction rate of 209 mmol g−1 h−1 in the absence of Pt. A clear correlation between high efficiencies and number of BTSO units within the polymer backbone can be established. The design rules pioneer the design of future organic materials is presented for a cost-efficient and sustainable hydrogen photocatalysis.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました