文字通りの「ひも理論」で自然ネットワークを解読(Scientists Use String Theory to Crack the Code of Natural Networks)

2026-01-07 レンセラー工科大学(RPI)

米レンセラー工科大学(RPI)の研究チームは、弦理論の数学的枠組みを応用し、自然界に広く存在するネットワーク構造の背後にある共通原理を解明した。生態系、脳神経回路、社会・技術ネットワークなどは一見多様だが、研究では高次元幾何や曲率の概念を用いることで、ノード間の結合様式や情報・物質の流れが統一的に記述できることを示した。弦理論由来の数理手法により、ネットワークの安定性、効率性、脆弱性が幾何学的性質として理解可能となり、従来の経験的モデルを超える説明力を獲得した。本成果は、複雑系の普遍法則の理解を進めるとともに、脳科学、気候、インフラ設計、AIなど多分野への応用可能性を示す。

文字通りの「ひも理論」で自然ネットワークを解読(Scientists Use String Theory to Crack the Code of Natural Networks)
Natural physical networks are continuous, three-dimensional objects, like the small mathematical model displayed here. Researchers have found that physical networks in living systems follow rules borrowed from string theory, a theoretical physics framework. (Illustration by Xiangyi Meng/RPI)

<関連情報>

表面最適化は物理ネットワークのローカル設計を左右する Surface optimization governs the local design of physical networks

Xiangyi Meng,Benjamin Piazza,Csaba Both,Baruch Barzel & Albert-László Barabási
Nature  Published:07 January 2026
DOI:https://doi.org/10.1038/s41586-025-09784-4

figure 1

Abstract

The brain’s connectome1,2,3 and the vascular system4 are examples of physical networks whose tangible nature influences their structure, layout and, ultimately, their function. The material resources required to build and maintain these networks have inspired decades of research into wiring economy, offering testable predictions about their expected architecture and organization. Here we empirically explore the local branching geometry of a wide range of physical networks, uncovering systematic violations of the long-standing predictions of wiring minimization. This leads to the hypothesis that predicting the true material cost of physical networks requires us to account for their full three-dimensional geometry, resulting in a largely intractable optimization problem. We discover, however, an exact mapping of surface minimization onto high-dimensional Feynman diagrams in string theory5,6,7, predicting that, with increasing link thickness, a locally tree-like network undergoes a transition into configurations that can no longer be explained by length minimization. Specifically, surface minimization predicts the emergence of trifurcations and branching angles in excellent agreement with the local tree organization of physical networks across a wide range of application domains. Finally, we predict the existence of stable orthogonal sprouts, which are not only prevalent in real networks but also play a key functional role, improving synapse formation in the brain and nutrient access in plants and fungi.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました