触媒の新発見が安全な化学反応設計を可能に(Exciting Chemistry)

2025-12-04 ピッツバーグ大学

ピッツバーグ大学を中心とする研究チームは、塩素に代わる安全で持続可能な消毒法として注目される“水電解によるオンデマンド・オゾン生成”の鍵となる触媒設計原理を解明した。従来、ニッケル・アンチモン添加酸化スズ(NATO)触媒は比較的安価で有望とされてきたが、急速に劣化するため実用化の妨げとなっていた。研究では、量子化学計算と電気化学実験により、触媒表面の欠陥がオゾン生成を促進する一方で腐食を加速するという二面性を持つことを特定。この“反応加速と腐食”のトレードオフが性能低下の根本原因であると示した。どの欠陥がオゾン生成に有効で、どの欠陥が腐食を誘発するかを切り分けたことで、安定性と活性を両立する次世代触媒の設計指針が得られた。本成果は、病院・浄水施設での塩素依存から脱却し、安全性の高い現場型オゾン消毒技術の確立に向けた重要な前進である

。<関連情報>

水酸化過程における酸化スズの電気化学的腐食と触媒ダイナミクス Electrochemical Corrosion and Catalysis Dynamics of Tin Oxide during Water Oxidation

Rayan Alaufey,Lingyan Zhao,Christina Lents,Brianna Markunas,Adam D. Walter,Qin Wu,John A. Keith,and Maureen Tang
ACS Catalysis  Published October 27, 2025
DOI:https://doi.org/10.1021/acscatal.5c04461

Abstract

触媒の新発見が安全な化学反応設計を可能に(Exciting Chemistry)

Metal oxide corrosion severely limits anodic electrocatalysis, particularly at high potentials in acidic environments, where degradation pathways remain poorly defined. This study establishes explicit connections between corrosion and electrocatalysis on tin oxide during water oxidation by examining the roles of lattice defects, reactive oxygen species, interfacial pH variations, and speciation of corroded tin in acid. We first demonstrate the presence of structural defects such as oxygen vacancies and substoichiometric Sn(II) species by integrating electron paramagnetic resonance spectroscopy, ultraviolet photoelectron spectroscopy, and Mott–Schottky analysis. Kohn–Sham density functional theory calculations reveal that explicit water structures thermodynamically stabilize reaction intermediates and lower reaction overpotentials. Moreover, we propose that water dissociation leads to hydrogen-bonding networks formed by H* and OH* intermediates, which may span the entire catalyst surface and decrease the interfacial pH to drive corrosion. In contrast, the electrochemical generation of reactive oxygen species is shown to play a minor role in catalyst corrosion during water oxidation using inductively coupled plasma mass spectrometry coupled with selective chemical scavengers. Square-wave voltammetry combined with rotating ring-disk electrodes is used to reveal that under open-circuit conditions, only Sn(IV) cations chemically dissolve from tin oxide, while both Sn(IV) and Sn(II) species electrochemically corrode during water oxidation. Our results unveil a dynamic and complicated interplay between corrosive and catalytic pathways on metal oxide electrocatalysts: a decrease in interfacial pH due to water oxidation exacerbates Sn(II)/Sn(IV) corrosion. Subsequently, the electrochemical corrosion of Sn(II)/Sn(IV) facilitates product formation from lattice oxygen, while the redeposition of corroded Sn(II) as Sn(IV) can enable oxygen exchange with water. By elucidating the roles of defects and interfacial chemistry, this work provides a roadmap for engineering improved electrocatalysts that balance activity and stability, a critical step toward scalable and durable energy technologies.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました