微細な材料調整で量子コンピュータ性能を向上(Quantum computers get a boost from a tiny material tweak)

2025-12-03 サンディア国立研究所(SNL)

Sandia National Laboratoriesらの国際共同研究チームは、量子コンピュータなどに使われる半導体構造体「量子井戸(quantum well)」の性能を、小さな材料の “ちょっとした工夫” によって大幅に改善する方法を明らかにした。従来、量子井戸の「壁材」は純ゲルマニウムが使われてきたが、研究ではその外側のバリア層に微量のシリコンとスズ(tin)を添加することで、電子の移動度(モビリティ)がむしろ向上することを発見した。これは従来想定されていた「不純物は電気の流れを阻害する」という常識に反する成果であり、原子の「短距離秩序(short-range order)」が電気特性を改善する可能性が示唆された。こうした材料設計の工夫は、量子情報伝達の効率化や、既存シリコン技術との統合を容易にし、量子コンピュータや通信技術の実用化・スケールアップに貢献するものだ。今後、こうした“原子配列の最適化”による半導体改良が、次世代コンピューティングの性能底上げにつながると期待される。

微細な材料調整で量子コンピュータ性能を向上(Quantum computers get a boost from a tiny material tweak)
An illustration of two quantum wells. Researchers found that by adding small amounts of silicon and tin to the outer barriers, they increased the mobility of charge carriers passing through the middle. (Image courtesy of the University of Arkansas) Click on the thumbnail for a high-resolution image.

<関連情報>

SiGeSn障壁を有するGeSn量子井戸における高移動度と静電気 High Mobility and Electrostatics in GeSn Quantum Wells With SiGeSn Barriers

Christopher R. Allemang, David Lidsky, Peter Sharma, Shang Liu, Jifeng Liu, Yunsheng Qiu, Shuiqing Yu, Tzu-Ming Lu
Advanced Electronic Materials  Published: 09 October 2025
DOI:https://doi.org/10.1002/aelm.202500460

Abstract

GeSn is an emerging material with potential applications in next-generation integrated optoelectronics and quantum information processing. While GeSn/SiGeSn quantum wells exhibit promising optical properties, their electrical transport characteristics and governing electrostatics in gated structures remain unexplored. Heterostructure field-effect transistors are fabricated using GeSn/SiGeSn quantum wells and electronic transport properties of 2D holes are characterized. At 2 K, heterostructure field-effect transistors with well/barrier compositions of Ge0.945Sn0.055/Si0.03Ge0.93Sn0.04 and Ge0.9Sn0.1/Si0.017Ge0.927Sn0.056, show peak mobilities of 9000 and 19 000 cm2/Vs, respectively, the latter setting a record for the highest mobility reported for GeSn quantum wells with a Sn concentration around 6 % or greater. Remarkably, at low carrier densities, devices with a SiGeSn barrier exhibit mobilities several times higher than previously reported for GeSn quantum wells with a Ge barrier. This higher mobility contrasts with the expectation that alloy scattering from the barrier would reduce carrier mobility. Two mechanisms based on atom probe tomography data analyses are proposed: i) unintentionally improved SiGeSn/GeSn interface and/or ii) reduced alloy scattering from short-range order. Significant current–voltage hysteresis is observed, with the effective threshold gate voltage shifting by more than 5 V, attributed to non-equilibrium trapped charge at various interfaces within the SiGeSn heterostructure.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました