薄膜磁性結晶における励起子形成を解明(Scientists Describe Exciton Formation in Thin Magnetic Crystals)

2025-12-01 米国国立再生可能エネルギー研究所(NREL)

米国 NREL(National Renewable Energy Laboratory)と共同研究者は、量子計算・先端エレクトロニクス材料として注目される二次元磁性結晶の中で、電子と正孔が結合した励起子(エキシトン)がどのように形成されるかを初めて詳細に記述した。研究チームは、数原子層の超薄膜磁性結晶に光を当てた際に生じるスピン配置と電荷の相互作用を高精度で観測し、磁性秩序が励起子の生成効率・寿命・結合エネルギーに強く影響することを明らかにした。特に、外部磁場を変化させることで励起子特性が可逆的に制御できることが示され、量子情報処理に必要なスピンと光(エキシトン)を結びつけたデバイスの実現に向けて重要な知見となる。これらの結果は、将来の量子コンピュータ、超低消費電力デバイス、スピントロニクス応用などに関わる新材料設計を大きく前進させるものである。

薄膜磁性結晶における励起子形成を解明(Scientists Describe Exciton Formation in Thin Magnetic Crystals)
Left: A photon (quantum of light) can be absorbed by an electron (e-) in the valence band and excited to the conduction band, creating a free particle and leaving a hole (h+) behind. Right: In some cases, the same excitation process can form an exciton, when the electron and hole bind together and act as a quasiparticle. Illustration by Katie Carney, NREL

<関連情報>

層状反強磁性体における磁気的に閉じ込められた表面励起子とバルク励起子 Magnetically confined surface and bulk excitons in a layered antiferromagnet

Yinming Shao,Florian Dirnberger,Siyuan Qiu,Swagata Acharya,Sophia Terres,Evan J. Telford,Dimitar Pashov,Brian S. Y. Kim,Francesco L. Ruta,Daniel G. Chica,Avalon H. Dismukes,Michael E. Ziebel,Yiping Wang,Jeongheon Choe,Youn Jue Bae,Andrew J. Millis,Mikhail I. Katsnelson,Kseniia Mosina,Zdenek Sofer,Rupert Huber,Xiaoyang Zhu,Xavier Roy,Mark van Schilfgaarde,Alexey Chernikov & D. N. Basov
Nature Materials  Published:19 February 2025
DOI:https://doi.org/10.1038/s41563-025-02129-6

Abstract

The discovery of two-dimensional van der Waals magnets has greatly expanded our ability to create and control nanoscale quantum phases. A unique capability emerges when a two-dimensional magnet is also a semiconductor that features tightly bound excitons with large oscillator strengths that fundamentally determine the optical response and are tunable with magnetic fields. Here we report a previously unidentified type of optical excitation—a magnetic surface exciton—enabled by the antiferromagnetic spin correlations that confine excitons to the surface of CrSBr. Magnetic surface excitons exhibit stronger Coulomb attraction, leading to a higher binding energy than excitons confined in bulk layers, and profoundly alter the optical response of few-layer crystals. Distinct magnetic confinement of surface and bulk excitons is established by layer- and temperature-dependent exciton reflection spectroscopy and corroborated by ab initio many-body perturbation theory calculations. By quenching interlayer excitonic interactions, the antiferromagnetic order of CrSBr strictly confines the bound electron–hole pairs within the same layer, regardless of the total number of layers. Our work unveils unique confined excitons in a layered antiferromagnet, highlighting magnetic interactions as a vital approach for nanoscale quantum confinement, from few layers to the bulk limit.

0400電気電子一般
ad
ad
Follow
ad
タイトルとURLをコピーしました