化学生命工学学生が生分解性プラスチック研究で成果(Reluctant Researcher Turned First Author)

2025-12-01 ピッツバーグ大学

ピッツバーグ大学の化学工学専攻だったアンドリュー・アシュマーは当初、学部卒業後すぐに産業界へ進むつもりだったが、友人に誘われアルギン酸由来の海洋分解性バイオプラスチック研究に参加したことをきっかけに研究の道へ傾いた。教授陣ベックマンとフラートンが進めていたのは、海中で分解可能なアルギン酸ナトリウム系バイオプラスチック開発で、アシュマーは文献調査・実験・論文執筆まで主体的に担い、強固なカルシウム架橋が海水中のナトリウムイオンにより可逆的に解かれる仕組みを解明した。これにより海水に触れると自己分解する“トリガー型”バイオプラスチックが実現した。成果は2025年に論文として出版され、彼は第一著者に選出、大学は特許出願も実施。研究は彼の進路を変え、現在はカーネギーメロン大学で博士課程に進んでいる。

<関連情報>

塩水中で分解を誘発する均一架橋藻類バイオプラスチック Minor contribution of ammonia oxidizers to inorganic carbon fixation in the ocean

Andrew E. Ashmar, Eric J. Beckman and Susan K. Fullerton-Shirey
Green Chemistry  Published:07 Oct 2025
DOI:https://doi.org/10.1039/D5GC02866C

化学生命工学学生が生分解性プラスチック研究で成果(Reluctant Researcher Turned First Author)

Abstract

Addressing marine pollution caused by single-use plastic waste has become an important sustainability goal for preventing ecological hazards caused by microplastics. This work focuses on the reversible crosslinking of dehydrated, sodium alginate plastic films and their selective degradation in seawater into benign byproducts. Films are crosslinked by divalent ions, Ca2+ and Sr2+, via the hydrolysis of CaCO3 and SrCO3 by glucono-δ-lactone. The rate of Ca2+ release in simulated seawater (3.5 wt% NaCl) is quantified as a function of initial Ca2+ concentration. At the highest crosslinking densities, there is a seven-fold increase in the amount of Ca2+ released in the presence of salt water compared to DI water. Moreover, the calcium release rate increases more strongly with crosslinking density in salt water than DI water, showing that saltwater promotes the reversible crosslinking of the film into alginate salts that are fully soluble in water. Mechanical properties including elastic modulus and ultimate strength, show improvement with crosslinking density until the ion saturation concentration at which point both properties decrease abruptly. Reversible and selective crosslinking is not limited to Ca2+, but extends to other divalent ions including Sr2+, which is also demonstrated. Broadly, these results illustrate how noncovalent interactions in naturally occurring biomaterials can be used to create more sustainable plastics with tunable mechanical properties.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました