脳が姿勢を保つ仕組みを解明する“ボディスワップ”ロボットを開発(UBC ‘body-swap’ robot helps reveal how the brain keeps us upright)

2025-11-26 カナダ・ブリティッシュコロンビア大学(UBC)

University of British Columbia(UBC)と協力機関の研究者たちは、人間がどのように“立ってバランスを取るか”を探るための「ボディ・スワップ(body-swap)ロボット」を開発し、脳が姿勢の維持・平衡をどう制御しているか新たな知見を得た。ロボットは、重力・慣性・関節の粘性といった身体特性をリアルタイムで人為的に変化させたり、感覚フィードバックに短い遅延(約200 ms)を加えることで、神経信号の遅延や身体特性の変化がバランスに与える影響を再現する。実験の結果、脳は「感覚の遅延(時間)」と「身体特性の変化(空間)」を同様に扱っており、両者をほぼ同じ内部モデルで処理していることが明らかになった。つまり、バランス維持のための空間–時間的な制御は一元的に扱われており、遅延が生じても、身体特性を調整すれば補償しうるという。また、こうした手法は高齢者の転倒予防やリハビリ支援、あるいは人型ロボットの歩行安定化設計にも応用可能だ。

脳が姿勢を保つ仕組みを解明する“ボディスワップ”ロボットを開発(UBC ‘body-swap’ robot helps reveal how the brain keeps us upright)
A participant stands in UBC’s robotic balance platform, a research device designed to mimic and alter the forces involved in human standing balance. Credit: Sachi Wickramasinghe

<関連情報>

ロボットによる人間の二足歩行操作は、空間と時間の重なり合う内部表現を明らかにする Robotic manipulation of human bipedalism reveals overlapping internal representations of space and time

Paul Belzner, Patrick A. Forbes, Calvin Kuo, and Jean-Sébastien Blouin
Science Robotics  Published:26 Nov 2025
DOI:https://doi.org/10.1126/scirobotics.adv0496

Abstract

Effective control of bipedal postures relies on sensory inputs from the past, which encode dynamic changes in the spatial properties of our movement over time. To uncover how the spatial and temporal properties of an upright posture interact in the perception and control of standing balance, we implemented a robotic virtualization of human body dynamics to systematically alter inertia and viscosity as well as sensorimotor delays in 20 healthy participants. Inertia gains below one or negative viscosity gains led to larger postural oscillations and caused participants to exceed virtual balance limits, mimicking the disruptive effects of an additional 200-millisecond sensorimotor delay. When balancing without delays, participants adjusted their inertia gains to below one and viscosity gains to negative values to match the perception of balancing with an imposed delay. When delays were present, participants increased inertia gains above one and used positive viscosity gains to align their perception with baseline balance. Building on these findings, 10 naïve participants exhibited improved balance stability and reduced the number of instances they exceeded the limits when balancing with a 200-millisecond delay compensated by inertia gains above one and positive viscosity gains. These results underscore the importance of innovative robotic virtualizations of standing balance to reveal the interconnected representations of space and time that underlie the stable perception and control of bipedal balance. Robotic manipulation of body physics offers a transformative approach to understanding how the nervous system processes spatial information over time and could address clinical sensorimotor deficits associated with delays.

0109ロボット
ad
ad
Follow
ad
タイトルとURLをコピーしました