AIが数秒で余震リスクを予測(AI Tools Forecast Aftershock Risk in Seconds)

2025-11-25 エディンバラ大学

University of Edinburgh(エディンバラ大学)、British Geological Survey(BGS)、University of Padua(パドヴァ大学)の研究チームは、人工知能(AI)を用いて地震の余震発生リスクを震源直後にわずか数秒で予測できるツールを開発した。これまで主流だった余震の予測モデル「Epidemic‑Type Aftershock Sequence model(ETASモデル)」は、処理に数時間〜数日を要していたが、今回の機械学習モデルはその性能と同等ながら、予測を数秒で実行可能とされる。データとしては、米カリフォルニア州・ニュージーランド・イタリア・日本・ギリシャなど地震頻発地域の観測記録を用い、M4以上の地震発生後24時間以内に起こる余震の数を予測対象とした。これにより、災害発生直後の迅速な情報提供が可能となり、公共安全対策や資源配分の意思決定支援へ大きな可能性を持つ。

<関連情報>

短期データ駆動型時空間地震活動率予測のための深層学習アプローチに向けて Towards a deep learning approach for short-term data-driven spatiotemporal seismicity rate forecasting

Foteini Dervisi,Margarita Segou,Piero Poli,Brian Baptie,Ian Main & Andrew Curtis
Earth, Planets and Space  Published:25 November 2025
DOI:https://doi.org/10.1186/s40623-025-02241-6

AIが数秒で余震リスクを予測(AI Tools Forecast Aftershock Risk in Seconds)

Abstract

Recent advances in earthquake monitoring have led to the development of methods for the automatic generation of high-resolution catalogues. These catalogues are created at considerably reduced processing times and contain significantly larger volumes of data concerning seismic activity compared to standard catalogues created by human analysts. Disciplinary statistics and physics-based earthquake forecasting models have shown improved performance when rich catalogues are used. The use of high-resolution catalogues paired with machine learning algorithms, which have recently evolved due to the rise in the availability of data and computational power, is therefore a promising approach to uncovering underlying patterns and hidden laws within earthquake sequences. This study focuses on the development of short-term data-driven spatiotemporal seismicity forecasting models with the help of deep learning and tests the hypothesis that deep neural networks can uncover complex patterns within earthquake catalogues. The performance of the forecasting models is assessed using metrics from the data science and earthquake forecasting communities. The results show that deep learning algorithms are a promising solution for generating short-term seismicity forecasts, provided that they are trained on a representative dataset that accurately captures the properties of earthquake sequences. Comparisons of machine learning-based forecasting models with an epidemic-type aftershock sequence benchmark show that both types of models outperform the persistence null hypothesis commonly used as a benchmark in forecasting the behaviour of other types of non-linear systems. Machine learning forecasting models achieve similar performance to that of an epidemic-type aftershock sequence benchmark on the Southern California and Italy test datasets at significantly reduced processing times – a major advantage in applications to short-term operational earthquake forecasting.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました