新しい分子層が高温下でペロブスカイト-シリコン太陽電池の寿命を延ばす(New molecular layer helps perovskite-silicon solar cells last longer under heat)

2025-11-21 シンガポール国立大学(NUS)

ペロブスカイト・シリコンタンデム太陽電池は高効率が期待される一方、高温環境で劣化しやすいことが大きな課題だった。NUS研究チームは、層間をつなぐ自己集合分子層(SAM)が熱で構造を乱し、性能低下を引き起こす“弱点”であることを特定。そこで分子間に架橋構造を導入した新しいSAMを開発し、接合層の熱安定性を大幅に向上させた。改良型タンデム電池は65℃で1200時間の連続試験後も初期性能の96%以上を維持し、認証効率33.6%も達成した。製造プロセスを複雑化させず弱点を補強できる点が強みで、今後は実用サイズのモジュール化と高温多湿環境での評価が進められる。

新しい分子層が高温下でペロブスカイト-シリコン太陽電池の寿命を延ばす(New molecular layer helps perovskite-silicon solar cells last longer under heat)
NUS researchers Dr Zhang Boxue (left), Assistant Professor Park Somin (middle) and Assistant Professor Wei Mingyang (right) developed a heat-resistant material to enhance the stability of perovskite/silicon tandem solar cells.

<関連情報>

ペロブスカイト/シリコンタンデム太陽電池の安定動作のための架橋分子接合 A cross-linked molecular contact for stable operation of perovskite/silicon tandem solar cells

Boxue Zhang, Junsheng Luo, Haomiao Yin, Qing Li, […] , and So Min Park
Science  Published:20 Nov 2025
DOI:https://doi.org/10.1126/science.ady6874

Editor’s summary

Polymerizing phosphonic acid hole transporters through Schiff-base chemistry was shown to enhance the operational stability of perovskite-silicon tandem solar cells at elevated temperatures. Zhang et al. reduced the thermal degradation of these self-assembled layers by derivatizing the molecules with primary amines that were cross-linked with aldehyde-functionalized bipyridine molecules. One-square-centimeter tandem solar cells achieved power conversion efficiencies exceeding 34% and lost less than 4% of their initial performance after about 1200 hours of maximum power point tracking at 65°C. —Phil Szuromi

Abstract

Monolithic perovskite/silicon tandem solar cells surpass the power-conversion efficiency limits of single-junction solar cells but face challenges in operational stability. We identified fill factor diminution as a key performance-loss mode in the state-of-the-art tandem architecture. We reveal that widely used hole-selective molecular contacts, which enhance tandem cell performance, undergo thermal degradation that undermines charge transport. At elevated temperatures, the resistance of conventional monomeric contacts increases by about sixfold because of thermal-induced disorder. To stabilize interfacial structures, we introduce in situ synthesized cross-linked molecular contacts based on Schiff base linkages. One-square-centimeter perovskite/silicon tandem solar cells achieved power-conversion efficiencies exceeding 34% (33.61% certified), and three independent devices retained 96.2 ± 1.7% of their initial performance after about 1200-hour maximum power point operation under AM1.5G illumination at 65°C.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました