複雑地形での気象予測を向上させる新アルゴリズム(Researchers Develop All Flow Directions Scheme to Boost Weather Forecast Accuracy in Complex Terrain)

2025-11-18 中国科学院(CAS)

中国科学院・大気物理研究所の研究チームは、山岳地形上を流れる風の挙動をより正確に再現するため、従来の「8方向(8X)地形スキーム」に代わる全方位対応“All Flow Directions(AFD)”スキームを開発した。従来手法では、山の向きが8つの方位に段階的に分類されるため、風向が中間方向に変化すると地形表現が“ジャンプ”し、予測誤差が生じていた。AFDスキームは、風向に対して連続的に地形の傾斜・形状を評価できるため、風が山岳地形でどのように遅延・偏向・重力波を生むかを、はるかに現実的にシミュレーションできる。チベット高原を対象とした検証では、成層圏の風パターン再現精度が 10〜20%向上。これにより、山越え気流、山岳降水、地域気候変動、さらには水資源管理や異常気象予測の初期条件が大幅に改善される。研究成果は Journal of Geophysical Research: Atmospheres に掲載され、複雑地形での天気予報精度向上に大きく寄与する技術として期待されている。

複雑地形での気象予測を向上させる新アルゴリズム(Researchers Develop All Flow Directions Scheme to Boost Weather Forecast Accuracy in Complex Terrain)

A schematic diagram of the coupling of the orographic drag scheme considering anisotropy within the WRF model framework. (Image by TIAN Yuhang)

<関連情報>

気象研究予報モデルにおける新開発の地形抵抗スキームの実装 Implementation of the Newly Developed Orographic Drag Scheme in the Weather Research and Forecast Model

Yuhang Tian, Zhenghui Xie, Jinbo Xie, Binghao Jia, Peihua Qin, Ruichao Li, Longhuan Wang, Heng Yan, Yanbin You
Journal of Geophysical Research: Atmospheres  Published: 07 November 2025
DOI:https://doi.org/10.1029/2025JD044517

Abstract

A reasonable representation of the complex terrain impacts including orographic anisotropy in numerical models is crucial for improving weather and climate simulations especially in the mountainous region. In this study, we developed the orographic drag scheme that includes orographic anisotropy for all flow directions based on Lambert projection grid and implemented it into the Weather Research and Forecast (WRF) model. We then conducted two monthly simulations for Tibetan Plateau (TP) using the updated WRF model with the new drag scheme and that with orographic anisotropy for eight representative directions (8X) to validate the updated model against station observation and reanalysis data. The new scheme is shown to reduce the root-mean-square-error (RMSE) in the upper-level zonal wind speed (above 50 hPa) by 10%–20% in the north of the TP and by 5%–10% on the northern TP region. This is achieved by better representation of the orographic parameters that perturbed the launching gravity wave momentum flux from the surface and altered its breaking level aloft, thereby impacting the zonal wind vertically. The weakened drag over the west TP raised the breaking level and enhanced zonal wind below 100-hPa while weakened zonal wind above; strengthened drag over the north of TP lowered the breaking level and weakened zonal wind below 50 hpa while enhance it above. The results indicate the importance of explicit orographic anisotropy representation for modeling of regional circulation in mountainous regions.

Plain Language Summary

Accurately representing complex terrain impacts including orographic anisotropy in numerical models is important for weather and climate forecasts. In this study, a new orographic drag scheme that better represents orographic anisotropy is implemented into the Weather Research and Forecast model and its performance is validated via simulations conducted for the Tibetan Plateau. It is shown that the new scheme reduces the biases of stratospheric zonal wind speed presented in the model. This improvement comes from adjusting orographic parameters, which change the launching gravity wave momentum flux from the surface and its breaking level aloft, altering zonal wind vertically. This indicates the importance of improved complex terrain impact in modeling of regional circulation especially in the mountainous region.

Key Points

  • A drag scheme considering orographic anisotropy in all flow directions is implemented in the Weather Research and Forecast model
  • The new scheme reduced zonal wind model bias over the stratosphere in Tibetan Plateau
  • The alleviation is due to explicit representation of orographic anisotropy that altered the momentum deposition in the stratosphere
1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました