ナノ流体の連続体記述崩壊を解析(Articulating the Breakdown of Continuum Descriptions of Nanoconfined Fluid Flows)

2025-11-18 パシフィック・ノースウェスト国立研究所 (PNNL)

PNNLの研究チームは、ナノスケールに閉じ込められた流体(ナノコンファインド流体)の挙動について、従来の連続体(コンティニューム)流体力学モデルが破綻し始める条件を明らかにしました。具体的には、チャネルや微細孔などの寸法が極めて小さい流路では、分子スケールの固-液界面相互作用、壁面近傍流体の構造化、水のような流体の異常挙動などが支配的となり、ナビエ-ストークス方程式や無滑り境界条件といった通常前提が適用できなくなることが示されました。実験的・計算的手法を用い、ナノチャネル幅数ナノメートルレベルでの流速、摩擦、スリップ長(滑り長)などを評価し、界面化学・流体の配向構造・薄膜状態といったファクターが流動特性を大きく変えることも明らかになっています。この成果は、ナノ流体技術、クリーン水処理、エネルギー変換デバイス等におけるマルチスケールでの設計指針を提供し、マクロ流体モデルと分子モデルの橋渡しとなるモデル構築に大きく貢献します。

ナノ流体の連続体記述崩壊を解析(Articulating the Breakdown of Continuum Descriptions of Nanoconfined Fluid Flows)This study establishes an unambiguous theoretical analysis for modeling fluid flow in confined channels that defines two regions, one where nanoscale interfacial dynamics are critical and another where the flow is accurately modeled by standard continuum theory.(Image by Haoyuan Shi and Jaehun Chun | Pacific Northwest National Laboratory)

<関連情報>

閉じ込められた水系の流体力学的記述に分子スケールを組み込む
Incorporating the molecular-scale into a hydrodynamic description of confined aqueous systems

Haoyuan Shi;Christopher J. Mundy;Gregory K. Schenter;Jaehun Chun
The Journal of Chemical Physics  Published:October 07 2025
DOI:https://doi.org/10.1063/5.0279626

Hydrodynamics provides a continuum-level description of fluid motion, but its applicability at the nanoscale becomes uncertain due to the emerging importance of molecular-level effects such as spatial heterogeneity. Hydrodynamic boundary conditions that incorporate molecular details allow us to partition the system into a near-wall region and a bulk fluid region. We identify a hydrodynamic wall located inside the fluid that determines where slip begins. By extending the hydrodynamic wall with the slip length, the position of the extrapolated wall is established. This offers a unified description of both slip and stagnant flow behaviors, with wall hydrophobicity characterized by the relative location of the extrapolated wall with respect to the physical wall. Employing this concept in analyses of equilibrium molecular dynamics (MD) and non-equilibrium MD simulations of Couette and Poiseuille flows, our results demonstrate consistency between equilibrium and non-equilibrium approaches across different flow types and confinement levels. This demonstrates the robust nature of linear response theory. We then explore the effects of fluid-wall and bulk fluid interactions on the hydrodynamic properties. These findings enhance the effectiveness of molecular-based simulations for investigating complex confined systems in nanofluidics, biology, and colloidal science, offering a complementary molecular-scale perspective to traditional continuum approaches.

0106流体工学
ad
ad
Follow
ad
タイトルとURLをコピーしました