チベット高原における積雪と地熱の相互作用を解明(New Study Reveals Snow-ground Thermal Coupling on Qinghai-Tibet Plateau)

2025-11-18 中国科学院(CAS)

中国科学院・西北生态環境資源研究院(NIEER)と南京信息工程大学の共同研究により、チベット高原における積雪と地表熱状態の結合過程が詳細に明らかにされた。高原の積雪は北極圏と異なり薄く短命であるが、永久凍土の地温や地表エネルギーフラックスに強く影響する。本研究では標高5100mと4538mの2地点で長期観測を実施し、積雪特性、地表温度(GST)の応答、エネルギー収支の変動を解析した。その結果、浅い積雪が引き起こす非線形な地表熱効果が定量化され、積雪—地温結合の進行段階を説明する「4区間メカニズム枠組み」が提案された。この枠組みは、浅雪域に特徴的な強い大気—地表相互作用を反映し、土地面モデルや永久凍土モデルにおける結合過程のパラメータ化に有用な運用基準を提供する。研究成果は、気候変動下でのチベット高原永久凍土の進化予測や極端現象リスク評価の精度向上に寄与する。

<関連情報>

高山永久凍土における積雪の閾値制御断熱・冷却効果:青海・チベット高原からの証拠 Threshold-governed insulating and cooling effects of snow cover on alpine permafrost: evidence from the Qinghai–Tibet Plateau

Yao Xiao, Guojie Hu, Ren Li, Tonghua Wu, Xiaodong Wu, Guangyue Liu, Defu Zou, Zanpin Xing, Jimin Yao, Chong Wang, Lin Zhao
Agricultural and Forest Meteorology  Available online: 20 August 2025
DOI:https://doi.org/10.1016/j.agrformet.2025.110802

Highlights

  • High-resolution observations reveal nonlinear snow–ground thermal responses governed by depth thresholds.
  • Shallow snow (<2 cm) induces ground cooling via enhanced albedo and melt-related energy lSoss.
  • Site-specific insulation thresholds (4.1 cm at TGL, 6.9 cm at XDT) suppress heat loss and stabilize energy fluxes.
  • Snow–ground coupling on the QTP differs from Arctic systems due to thinner, more ephemeral snowpacks.
  • Findings support snow-depth–sensitive parameterization in permafrost and land surface models.

Abstract

Snow cover critically influences ground thermal regimes and surface energy fluxes in alpine permafrost regions. However, its depth-dependent effects remain poorly understood, particularly on the Qinghai–Tibet Plateau (QTP), where snow is typically thin and short-lived. Using multi-year, high-resolution observations from two contrasting sites (TGL, 5100 m; XDT, 4538 m), we analyzed snow cover characteristics, ground surface temperature (GST) responses, and energy flux dynamics. Piecewise regression revealed site-specific insulation thresholds at 4.1 cm (TGL) and 6.9 cm (XDT). Above these depths, GST variability declined, the difference between GST and air temperature (ΔT) increased, and net radiation and soil heat flux decreased, indicating stronger thermal buffering. Below the thresholds, especially under snow <2 cm, GST amplitude remained high and ΔT low, suggesting enhanced cooling via albedo and melt-induced latent heat loss. Energy fluxes exhibited similarly nonlinear responses, with stronger radiative loss and variability under thin snowpacks, especially at XDT. Transient events missed by daily datasets were captured by high-frequency sensors. Compared to Arctic regions, the QTP’s snow–ground coupling is dominated by shallow-snow processes and strong surface–atmosphere exchange. These findings underscore the need for threshold-aware, depth-sensitive snow parameterizations in cold-region models to better simulate thermal transitions and permafrost responses under changing snow regimes.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました