ホットジュピターの静かな誕生に迫る~「静か」に生まれるホットジュピターと 「激しく」生まれるホットジュピターの違い~

2025-11-07 東京大学

東京大学の研究チームは、恒星の近くを回る巨大惑星「ホットジュピター」の形成過程を区別する新しい観測手法を開発した。従来、ホットジュピターは「他天体の重力で乱れて内側へ落ち込む型」と「原始惑星系円盤内を緩やかに移動する型」があり、後者の識別は困難だった。本手法により、軌道の傾きや進化傾向から円盤移動由来の惑星を抽出でき、500個以上の既知惑星のうち約30個が該当と判明。惑星形成と軌道進化の多様性を理解する新たな鍵となる。

ホットジュピターの静かな誕生に迫る~「静か」に生まれるホットジュピターと 「激しく」生まれるホットジュピターの違い~
図1:ホットジュピターの軌道進化の2種類

<関連情報>

ディスクマイグレーションによって到来した近傍木星の特定:原始的な配列の証拠、近傍の伴星の選好、そして暴走移動のヒント Identifying Close-in Jupiters that Arrived via Disk Migration: Evidence of Primordial Alignment, Preference of Nearby Companions and Hint of Runaway Migration

Yugo Kawai, Akihiko Fukui, Noriharu Watanabe, Sho Fukazawa, and Norio Narita
The Astronomical Journal  Published: 2025 November 7
DOI:10.3847/1538-3881/ae0a11

Abstract

Two leading hypotheses for hot Jupiter migration are disk migration and high-eccentricity migration (HEM). Stellar obliquity is commonly used to distinguish them, as high obliquity often accompanies HEM. However, low obliquity does not guarantee disk migration, due to possible spin–orbit realignment or coplanar HEM. Seeking a proxy for disk migration, we investigate the idea that when the circularization timescale of a planet on circular orbit is longer than its age (τcir > τage), HEM would not have had sufficient time to complete, favoring disk migration. We empirically calibrate the reduced planetary tidal quality factor to be Qp=4.9+3.5-2.5×105 using the eccentricity distribution of 500+ Jovian mass (0.2MJ < Mp < 13MJ) planets with measured masses and radii, a value consistent with solar system Jupiter. We then calculate τcir and identify dozens of disk migration candidates (τcir > τagee < 0.1). These planets show three notable trends. We first find a clear cutoff of obliquity at τcirτage, suggesting the primordial alignment of protoplanetary disks. Second, we find that among hot Jupiters (a < 0.1 au), nearby companions are preferentially found around disk migration candidates, suggesting that either HEM dominates hot Jupiter formation, or disk migration also disrupts nearby companions at short separations. Finally, we find a possible dearth of disk migration candidates around mass ratio logq~-3.2, consistent with a similar dip suggested at longer orbits from microlensing. The lack of planets across different orbital distance, if true, could be interpreted as a hint of runaway migration.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました