脳内神経線維の迷路構造を高精度で可視化する新技術を開発(Milestone in mapping the brain’s nerve fibre labyrinth)

2025-11-05 オランダ・デルフト工科大学(TUDelft)

デルフト工科大学(TU Delft)と国際共同研究チームは、ヒト脳の神経繊維構造をマイクロメートル精度で可視化する新手法「ComSLI(scattered light imaging variant)」を開発した。従来の偏光顕微鏡では識別困難だった交差・高密度繊維領域を、回転照明LEDと高解像度カメラで光散乱の方向変化を解析することで立体的に再構築可能とした。固定パラフィン標本を用い、細い神経線維の走行や交差パターンを正確に描出できるため、脳の「神経繊維迷路」の構造解明に大きく貢献。得られた3Dマップはアルツハイマー病や多発性硬化症など神経疾患の構造的理解を支える基盤となる。研究成果はNature Communicationsに掲載され、神経科学・生体イメージング分野の新たなマイルストーンとされる。

脳内神経線維の迷路構造を高精度で可視化する新技術を開発(Milestone in mapping the brain’s nerve fibre labyrinth)
Artist’s impression of ComSLI. A rotating LED light coming from below shines through a whole human brain section into a high-resolution camera above. The result (on the right): a detailed map of the nerve fibre pathways. The brain slice comes from a preserved brain that was hardened in paraffin wax (on the left), to obtain micrometre thin slices. Credits: ScienceBrush

<関連情報>

サンプル調製に依存しない組織学におけるミクロン解像度の繊維マッピング Micron-resolution fiber mapping in histology independent of sample preparation

Marios Georgiadis,Franca auf der Heiden,Hamed Abbasi,Loes Ettema,Jeffrey Nirschl,Hossein Moein Taghavi,Moe Wakatsuki,Andy Liu,William Hai Dang Ho,Mackenzie Carlson,Michail Doukas,Sjors A. Koppes,Stijn Keereweer,Raymond A. Sobel,Kawin Setsompop,Congyu Liao,Katrin Amunts,Markus Axer,Michael Zeineh & Miriam Menzel
Nature Communications  Published:05 November 2025
DOI:https://doi.org/10.1038/s41467-025-64896-9

Abstract

Mapping the brain’s fiber network is crucial for understanding its function and malfunction, but resolving nerve trajectories over large fields of view is challenging. Here, we show that computational scattered light imaging (ComSLI) can map fiber networks in histology independent of sample preparation, also in formalin-fixed paraffin-embedded (FFPE) tissues including whole human brain sections. We showcase this method in new and archived, animal and human brain sections, for different sample preparations (in paraffin, deparaffinized, various stains, unstained fresh-frozen). We convert microscopic orientations to microstructure-informed fiber orientation distributions (μFODs). Adapting tractography tools from diffusion magnetic resonance imaging (dMRI), we trace axonal trajectories revealing white and gray matter connectivity. These allow us to identify altered microstructure or deficient tracts in demyelinating or neurodegenerating pathology, and to show key advantages over dMRI, polarization microscopy, and structure tensor analysis. Finally, we map fibers in non-brain tissues, including muscle, bone, and blood vessels, unveiling the tissue’s function. Our cost-effective, versatile approach enables micron-resolution studies of intricate fiber networks across tissues, species, diseases, and sample preparations, offering new dimensions to neuroscientific and biomedical research.

0110情報・精密機器
ad
ad
Follow
ad
タイトルとURLをコピーしました