電池のエネルギー密度向上に関する研究(Bridging boundaries: How are researchers packing more energy into batteries?)

2025-10-29 ペンシルベニア州立大学(PennState)

ペンシルベニア州立大学の孫洪濤准教授らは、従来の電極より5~10倍厚く、2倍の密度を持ちながら高性能を維持するリチウム電池用新電極を開発した。電極内部に「人工境界層(synthetic boundaries)」を設け、電荷移動の高速経路を形成することで、従来の厚膜化で生じる伝導阻害を克服。エネルギー密度は500Wh/kg超を達成し、EV航続距離の飛躍的向上が期待される。さらに液体添加剤を用いた低温(約120℃)圧縮プロセスで10倍の靭性と3倍の強度を実現。簡易な光学解析で充放電時のひずみ挙動を可視化でき、劣化抑制にも寄与する。量産可能な安価製造法として、ロール・トゥ・ロール生産への拡張が計画されている。成果は『Nature Communications』誌に掲載。

電池のエネルギー密度向上に関する研究(Bridging boundaries: How are researchers packing more energy into batteries?)
The synthetic boundary phases, colored red in the model above, form an internal network across the electrodes. This network helps facilitate the fast travel of particles across the system. Credit: Provided by Hongtao Sun. All Rights Reserved.

<関連情報>

高密度の厚膜複合電極における機械的・電気化学的性能向上のための多機能合成限界の解明 Unveiling multifunctional synthetic boundaries for enhanced mechanical and electrochemical performance in densified thick composite electrodes

Bo Nie,Seok Woo Lee,Ta-Wei Wang,Tengxiao Liu,Ju Li & Hongtao Sun
Nature Communications  Published:29 October 2025
DOI:https://doi.org/10.1038/s41467-025-65257-2

Abstract

High energy density lithium-ion batteries are essential for sustainable energy solutions, as they reduce reliance on fossil fuels and lower greenhouse gas emissions. Increasing electrode thickness is an effective strategy to raise energy density at the device level, but it poses inherent scientific challenges. Thick electrodes typically require a highly porous structure (over 40% porosity) to maintain sufficient charge transport. Such porosity sharply lowers volumetric energy density, limiting use in space-constrained applications. Conversely, direct densification of thick electrodes intensifies charge diffusion limitations and exacerbates mechanochemical degradation. To overcome these trade-offs, we explore a geology-inspired, transient liquid-assisted densification process that produces dense, thick electrodes with multifunctional synthetic secondary boundaries. These boundaries provide three key benefits: (1) strain resistance that mitigates mechanochemical degradation, as demonstrated by operando full-field strain mapping; (2) enhanced charge transport across boundary phases in thick and dense electrodes (thickness > 200 μm, relative density > 85 %), leading to improved comprehensive electrochemical performance with a volumetric capacity of 420 mAh cm−3, an areal capacity of 23 mAh cm−2, and a specific (gravimetric) capacity of 195 mAh g−1 at a current density of 1 mA cm−2; and (3) tailored conducting phases that increase active material content to 92.7 % by weight, further elevating volumetric capacity to 497 mAh cm−3.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました